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Abstract
This interdisciplinary project deals with the vivid visualization of advanced graph algorithms.
In particular, algorithms to solve two distinctive problems in discrete math are considered.
Namely the maximum flow problem as well as the shortest path problem with resource
constraints. For efficiency reasons, one often employs advanced graph algorithms to solve
above problems. The maximum flow problem is solved using the efficient push-relabel
algorithm. To solve the shortest path problem with resource constraints, we employ a
generic label-setting algorithm which follows the dynamic programming principle.
Both algorithms carry a lot of state variables and are thus not easy to understand

intuitively. An additional visualization layer with an intuitive representation of all state
variables and state transitions during algorithm execution was developed. It displays
the height function of each node in case of the push-relabel algorithm or the pareto
frontier of all labels resident in a certain node in case of the label-setting algorithm.
To achieve the goal of a high interactivity, we replaced the previous Canvas based graph
visualization code with a new implementation based on SVG, using D3.js, a JavaScript
library for producing dynamic, interactive data visualizations in web browsers.

Zusammenfassung
Das vorliegende interdisziplinäre Projekt beschäftigt sich mit der anschaulichen Darstellung
von fortgeschrittenen Graphalgorithmen. Betrachtet werden zwei Verfahren zur Lösung von
Problemstellungen der diskreten Mathematik. Die zu visualisierenden Problemstellungen
sind hierbei das Max-Flow Problem sowie das Kürzeste-Wege Problem mit Ressourcenbe-
schränkungen. Als Lösungsverfahren für die aufgeführten Problemstellungen werden aus
Effizienzgründen häufig fortgeschrittene Graphalgorithmen herangezogen. Für die Lösung
des Max-Flow Problems findet der bekannte Push-Relabel Algorithmus in der Praxis
häufig Anwendung. Zur Lösung des Kürzeste-Wege Problems mit Ressourcenbeschränkungen
wird mit einem Label-Setting Algorithmus ein bekanntes Verfahren der dynamischen
Programmierung vorgestellt.

Beide Algorithmen führen eine Menge an Statusvariablen mit sich und sind deshalb nicht
leicht intuitiv zu verstehen. Es wurde eine zusätzliche Visualisierungsebene mit intuitiver
Repräsentation aller Statusvariablen und -übergänge entwickelt. Diese veranschaulicht die
Höhenfunktion jedes Knotens im Falle des Push-Relabel Algorithmus oder dessen Pareto-
Front im Falle des Label-Setting Algorithmus. Um hohe Interaktivität zu erreichen,
ersetzten wir den bisherigen auf Canvas basierenden Graphen-Visualisierungscode mit
einer neuen Implementierung basierend auf SVG mit D3.js, eine JavaScript Bibliothek zur
Erzeugung dynamischer, interaktiver Datenvisualisierungen in Web Browsern.
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Chapter 1

Introduction

All previous interdisciplinary projects [Sto13; Vel14; Sef15; BVZ15; Zön15; Fis16; Fei16]
display the state of graph algorithms on top of a network visualization, e.g. by annotating
vertices or edges with additional information.

For advanced graph algorithms [GT88; ID05], which are often employed for efficiency
reasons, the state size to visualize may become quite large. It may be thus advantageous
to visualize the state of such algorithms in an additional visualization layer.

Sketches of these visualizations exist in static form in textbooks [AMO93; Cor09; Jun13]
trying to illustrate the idea of the algorithm. The interesting part is however the change
of the state variables during algorithm execution, which is hard to print on paper. The
motivation of this project was thus to develop two web applications with a highly dynamic
and interactive visualization of these additional state variables. Since this interdisciplinary
project report is limited in the same way as the textbooks, we encourage the readers to try
out the web applications live.1 All the code developed is made available as open source
and can be used as basis for future projects.2

1.1 Related work
The primary sources of the algorithms of this work are [GT88; ID05]. Secondary source
for the push-relabel algorithm is the review article [GT14] and for the label-setting
algorithm three PhD theses, a diploma thesis and a journal article [Sol83; Zie01; Sch03;
Fei+04; Gar09]. A deeper understanding of the problems at hand and a broader view
of related algorithms was acquired using standard university textbooks [AMO93; Cor09;
Jun13], where the last one comes from the math domain, the middle one from the computer
science domain, while the first one lies somewhere in between. These allow to grasp the
connection between problem and algorithm. Another important source of inspiration are
the web resources such as lecture slides regarding maxflow [May13; Meh00; Wil07; Mat16]
and SPPRC [Pet06]. The boost C++ library’s documentation is a valuable source of
information for both algorithms [Sie01; Dre06]. The SPPRC is additionally handled in an
appealing website [NG13].
The implementation part of this interdisciplinary project is a large-scale refactoring

of previous projects [Sto13; Vel14; Sef15; BVZ15; Zön15] over the duration of two years.
The most drastical change is the usage of SVG and D3.js instead of a Canvas based

1web applications hosted at: http://www.adrian-haarbach.de/idp-graph-algorithms
2source code is available at: https://github.com/adrelino/idp-graph-algorithms
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Chapter 1 Introduction

visualizations. A beta version of this project already forms the basis of the latest two
interdisciplinary projects [Fis16; Fei16]. The needed JavaScript knowledge was acquired
in part with the help of [Fla11; Cro08; Hav15; RB13; Her12; Ste10]. The first one is
the definitive reference for javascript, the second one an advanced book about language
features to use or to leave out, the third and fourth one a good introduction for beginners.
The last two books cover important language aspects and design patterns, in particular
scope and closure, prototypal-based inheritance, statics, singletons and code-reuse patterns.
Concerning D3.js [BOH11], the crucial part one needs to understand is the data join
and the enter, update and exit selection, which are nicely explained in two blog posts
[Bos12; Bos16]. The introductory books [Mur13; Zhu13; Mee15] also give details on how to
implement charts as used for the secondary visualization layer.

1.2 Contributions
The main contributions of this work are the following:

• New concepts for secondary visualization layers.

• Web apps implementing a push-relabel algorithm and a label-setting algorithm.

The contributions that will benefit future projects most directly are our improvements of
the underlying implementation, structured according to MVC (Section 5.2):

Model A major refactoring of the basic Graph class with the extension to arbitrary resources,
easier algorithm state handling and new upload/download functionalities.

View A complete rewrite of the abstract GraphDrawer class for network visualization using
D3.js and SVG instead of Canvas with the possibility to download it in vector format
at any time. A Logger utility which allows to log algorithm execution messages with
up to three indentation levels.

Controller A new GraphEditor with support for modifying graphs with an arbitrary number of
resources on nodes and edges. The new class Tab and a small refactoring improved
future code reusability and simplified the reverse functionality and the synchronization
between algorithm state and pseudocode lines.

1.3 Overview
The remaining chapters of this report are organized as follows: First (Chapter 2), we provide
the necessary background knowledge from discrete math and algorithmic programming
principles. Then (Chapter 3), we introduce the maximum flow problem before discussing
previous work and providing important definitions, pseudocode and a visualization concept
for the push-relabel algorithm that solves it. The next chapter (Chapter 4) follows the
same structure for the shortest path problem with resource constraints and the label-
setting algorithm that solves it. Subsequently (Chapter 5), we give an overview of our
implementation with respect to used web technologies and the applied software design. We
finally (Chapter 6) summarize this project and give hints for future work.
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Chapter 2

Background

Problems defined on networks arise in many real-life applications, such as finding the fastest
route between two cities or computing the maximum bandwidth of an internet connection.
A network can mathematically be represented by a graph.

Definition 2.1 (simple directed graph)
A graph is an ordered pair G = (V,E) consisting of a vertex (or node) set V and an edge
(or arc) set E. The unqualified term "graph" usually refers to a simple graph which has no
multiple edges or self-loop edges. In a directed graph (digraph), E is a set of ordered pairs
of vertices, a subset of the cartesian product of vertices, that is E ⊆ V × V . If the graph is
simple, each edge e ∈ E can be uniquely identified by a pair of vertices from V , that is
e = (v, w) with v, w ∈ V and v 6= w, where v is the start vertex and w is the end vertex of
the directed edge or arc e [Jun13][1.6].

0

1

2

3

Figure 2.1: a digraph with V = {0, 1, 2, 3}, E = {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)}

For problems and algorithms defined on digraphs, it is often convenient to define the set
of edges coming into a vertex v and zthe set of edges leaving it:

δ−(v) : {e = (u, v) ∈ E | u, v ∈ V } incoming edges
δ+(v) : {e = (v, w) ∈ E | v, w ∈ V } outgoing edges

In above example of a digraph (Fig. 2.1), the vertex v = 2 has an incoming edge set of
δ−(2) = {(0, 2), (1, 2)} and an outgoing edge set of δ+(2) = {(2, 3)}.

3



Chapter 2 Background

Advanced algorithms to solve graph problems rely on common programming principles.
The first one is so basic that it actually forms the basis of sorting algorithms such as
MergeSort.

Definition 2.2 (divide-and-conquer)
In divide-and-conquer, we solve a problem recursively, applying three steps at each level of
the recursion: Divide the problem into a number of subproblems that are smaller instances
of the same problem. Conquer the subproblems by solving them recursively. If the
subproblem sizes are small enough, however, just solve the subproblems in a straightforward
manner. Combine the solutions to the subproblems into the solution for the original
problem. [Cor09, ch. 4]

Recursion is clear and appealing from a mathematical perspective, but for computational
efficiency reasons, divide-and-conquer is not always the best choice. It is better to remember
useful intermediate results.
Definition 2.3 (dynamic programming)
Dynamic programming, like the divide-and-conquer method, solves problems by combining
the solutions to subproblems. [...] divide-and-conquer algorithms partition the problem into
disjoint subproblems, solve the subproblems recursively, and then combine their solutions to
solve the original problem. In contrast, dynamic programming applies when the subproblems
overlap - that is, when subproblems share subsubproblems. In this context, a divide-
and-conquer algorithm does more work than necessary, repeatedly solving the common
subsubproblems. A dynamic-programming algorithm solves each subsubproblem just once
and then saves its answer in a table, thereby avoiding the work of recomputing the answer
every time it solves each subsubproblem. [Cor09, ch. 15]

Dynamic programming can be applied to a wide range of graph problems, as we will see
later. It works because of Bellman’s:
Definition 2.4 (Principle of Optimality)
An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision [Bel57, sec. 3.3].

For some kind of problems, we can get even more efficient with the greedy approach
originating from matroid theory [AMO93, sec. 13.7, p. 528] [Jun13, ch. 5]. It is at the
heart of the efficient and well known Dijkstra algorithm.

Definition 2.5 (greedy)
Algorithms for optimization problems typically go through a sequence of steps, with a set
of choices at each step. For many optimization problems, using dynamic programming to
determine the best choices is overkill; simpler, more efficient algorithms will do. A greedy
algorithm always makes the choice that looks best at the moment. That is, it makes a locally
optimal choice in the hope that this choice will lead to a globally optimal solution. [Cor09,
ch. 16]

4



Chapter 3

Maximum flows

3.1 The maximum flow problem

An important problem in many applications is to find out the maximum amount of flow
that can simultaneously be transferred over a network between two points. Depending
on the context, flow can mean different things, e.g the amount of water in a water pipe
system in your city or the bandwidth of a computer network. We call such a network a
flow network:

Definition 3.1 (flow network)
A flow network N is a 4-tuple N = (G, c, s, t) consisting of a digraph G, a positive real-
valued capacity function c : E → R+,∀e ∈ E : c(e) ≥ 0 defined on all edges of the graph
and two designated vertices, the source s ∈ V and the sink (or target) t ∈ V [AMO93][1.2].

However, the individual links in the network can only handle flow up to their maximum
capacity, e.g. they are limited by the diameter of the water pipe. Additionally, the total
flow must be preserved at the intermediate joints, e.g. we don’t want leaks in our pipe
system. This is called a feasible flow:

Definition 3.2 (feasible flow)
A feasible flow f from s to t is a mapping f : E → R satisfying two constraints: The
capacity constraint (3.1) ensures that the flow over an edge is always positive and not
exceeding the edge’s maximum capacity, while the flow conservation (3.2) assures that the
total flow into a vertex v /∈ s, t equals the total flow out of v:

0 ≤ f(e) ≤ c(e)∀e ∈ E (3.1)
capacity constraint∑

e∈δ−(v)
f(e) =

∑
e∈δ+(v)

f(e)∀v ∈ V \ {s, t} (3.2)
flow conservation

There might be many feasible flows (e.g the zero flow f = 0 ∀e ∈ E), but we are especially
interested in transferring as much as possible across the network, the maximum flow:

Definition 3.3 (maximum flow and flow value)
A maximum flow max |f | is a feasible flow that maximizes the flow value |f |, the amount

5



Chapter 3 Maximum flows

of flow which flows from s to t. This is the net flow into the sink t or out of the source s:

|f | =
∑

e∈δ−(t)
f(e) =

∑
e∈δ+(s)

f(e) (3.3)
flow value

An important concept in the context of flow algorithms is the residual network capturing
possible change to f , defined by the residual capacities c′ and the residual graph G′:

Definition 3.4 (residual graph)
For a flow f in G = (V,E), we can construct the residual graph G′ = (V,E′) by copying
all the vertices v ∈ V from G and for each e ∈ E adding one or two edges e′ to E′ with
residual capacity c′ under the following rules (Fig. 3.1):

forward edge if f(e) < c(e) for an edge e = (a, b) ∈ E, then add the forward edge e′ = (a, b)
with residual capacity c′(e′) = c(e)− f(e) to E′.

backward edge if f(e) > 0 for an edge e = (a, b) ∈ E, then add the backward edge
e′ = (b, a) with residual capacity c′(e′) = f(e) to E′.

G G'

)

)

)

b

a

3/10

b10/10

a0/10 b

ba

ba

0/7

ba

0/3

a

0/10

0/10

Figure 3.1: Construction of the residual graph G′ [May13].
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3.2 The push-relabel algorithm

3.2 The push-relabel algorithm

An early way to compute a maximum flow on a directed graph was called the augmenting
path method by Ford-Fulkerson [FF56].1 A path with available capacity is an augmenting
path, an s-t path in the residual graph. As long as such paths exist, one can increase the
flow globally on these paths. If the method terminates, it computes a maximum flow. It is
called a method and not an algorithm because the way to find augmenting paths in the
residual graph is not fully specified. Furthermore, there is no guarantee on termination and
runtime. About 15 years later, two algorithms based on the augmenting path method were
developed. They ensure a polynomial time bound by augmenting flow along the shortest
path first. The algorithm of Edmonds-Karp [EK72]2 ensures a runtime of O(|V | · |E|2)
while the one of Dinic [Din70]3 improves on that with a runtime of O(|V |2 · |E|). This
class of algorithms based on the Ford-Fulkerson method of augmenting paths has been
visualized in a previous interdisciplinary project [Fis16].

Still about another 15 years later, an alternative and more efficient method which uses
local operations based on the concept of a preflow and a height function was published:
The push-relabel algorithm of Goldberg-Tarjan [GT88]. In contrast to the previous, less
efficient algorithms based on augmenting paths, it changes the flow locally and only needs
to construct the residual graph locally.

3.2.1 Excess and height
The increased efficiency comes at the cost of not maintaining a feasible flow during algorithm
execution. Instead, a preflow is maintained:

Definition 3.5 (excess and preflow)
The preflow f̃ is a generalization of the flow f . The capacity constraint (3.1) of the edges is
still maintained, but the flow conservation (3.2) at the vertices is not: The equality sign = is
replaced with ≥:

∑
e∈δ−(v) f(e) ≥

∑
e∈δ+(v) f(e)∀v ∈ V \ {s}. One allows flow excess, that

is, some vertices can have more incoming than outgoing flow at the intermediate stages of
the algorithm [GT14]. The excess flow at a node v due to the preflow is non-negative for
all nodes except for the start node and defined as:

e(v) =
∑

e∈δ−(v)
f(e)−

∑
e∈δ+(v)

f(e) ≥ 0 ∀v ∈ V \ {s} (3.4)
excess

Definition 3.6 (active node)
As long as a vertex has positive (non-null) excess, it is called an active node.

Remark 3.7
An s-t preflow without active nodes is an s-t flow [Mat16].

1explained in textbooks [AMO93, sec. 6.4], [Cor09, sec. 26.2, p.724], [Jun13, sec. 6.1]
2explained in textbooks [Cor09, sec. 26.2, p. 727], [Jun13, sec. 6.2]
3explained in textbooks [AMO93, sec. 7.4], [Cor09, sec. 26.2], [Jun13, sec. 6.4]

7



Chapter 3 Maximum flows

Intuitively, we should try to push the excess at a node towards the sink, but what does
that mean? Another important concept in the push-relabel algorithm is the height function,
which is an approximation of a node’s distance to the sink. The local push operations try
to move excess at inner nodes ’downwards’ towards the sink. If the current node is at a
local minimum and still has excess, we relabel the node by increasing its height so that
subsequent push operations can remove the excess.

Definition 3.8 (height, valid labeling)
A height function4 h(v) ≥ 0 ∀v ∈ V is defined for all vertices of the graph. It is a valid
labeling of the nodes if it satisfies

h(t) = 0, h(s) = |V | and h(v) ≤ h(w) + 1 ∀e′ = (v, w) ∈ E′ (3.5)
height

Definition 3.9 (eligible edge)
An edge e′ = (v, w) ∈ E′ of the residual graph G′ is eligible if h(v) = h(w) + 1, meaning
that the current node is one level above the one to where we wish to push excess to.

3.2.2 Termination and runtime
The important property of the push-relabel algorithm is that when the algorithm terminates,
the computed preflow is actually a flow. This is because there can be no augmenting path
from s to t in the residual graph since any such path must contain a steep edge (since s is
on level |V |, t is on level 0) [Meh00].

The proof of the runtime involves counting the number of possible saturating and
nonsaturating push operations as well as relabel operations. Depending on the way the
vertices are selected we get different runtimes, proof sketches in [Meh00; Wil07; Mat16]:

• Generic (arbitrary selection rule) with runtime O(|V |2 · |E|) explained and proved in
[AMO93, sec. 7.6], [Cor09, sec. 26.4], [Jun13, alg. 6.6.1].

• Relabel-To-Front (FIFO selection rule) with runtime O(|V |3) explained and proved
in [AMO93, sec. 7.7],[Cor09, sec. 26.5], [Jun13, alg. 6.6.14].

• Highest label selection rule with runtime O(|V |2
√
|E|) explained and proved in

[AMO93, sec. 7.8] [Jun13, alg. 6.6.16].

We implemented the Relabel-To-Front variant with the first-in-first-out (FIFO) selection
rule. In this variant, a node with excess flow stays active either until a non-saturating
push or a relabel occurred.

4also called distance labeling or level function
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3.2 The push-relabel algorithm

3.2.3 Pseudocode

Algorithm 1: Goldberg-Tarjan Push-Relabel algorithm with FIFO selection rule
Input: digraph G = (V,E) with nodes s, t ∈ V and edge capacities c(e) ∀e ∈ E
Output: A feasible maximum s-t flow f(e)

1 (* Initialize the preflow *)
2 forall e = (u,w) ∈ E do
3 f(e)← (u == s) ? c(e) : 0
4 if u == s AND w 6= t then
5 Q.add(w)

6 (* Initialize the height function *)
7 h(s)← |V |
8 forall v ∈ V \ {s} do
9 h(v)← number of arcs on shortest v-t path

10 (* Main Loop *)
11 while Q 6= ∅ do
12 v ← Q.pop()
13 while e(v) > 0 AND ∃ e′ = (v, w) ∈ E′ |h(v) == h(w) + 1 do
14 (* Push *)
15 push min(e(v), c′(e′)) flow from v to w
16 if w 6= s, t AND w /∈ Q then
17 Q.add(w)

18 if e(v) > 0 then
19 (* Relabel *)
20 h(v)← 1 + min({h(w)|e∗ = (v, w) ∈ E′})
21 Q.add(v)

The pseudocode is split into blocks each consisting of a few lines to form different states
of the algorithm that can be visualized. This basically transforms the algorithm into a
finite state machine, which was first observed in another recent interdisciplinary project
[Fei16]. The different states are: 1. INITPREFLOW (lines 1-5), 2. INITHEIGHT (lines
6-9), 3. MAINLOOP (lines 10-12), 4. ADMISSIBLEPUSH (line 13), 5. PUSH (lines
14-14), 6. ADMISSIBLERELABEL (line 18) and 7. RELABEL (lines 19-21). For the
detailed description of these states we refer to our web application.

9



Chapter 3 Maximum flows

3.2.4 Visualization concept
The crucial requirement is [...] h(v) = h(w) + 1. Thus we are only allowed to push along
[eligible] residual edges e′ = (v, w) for which h(v) is exactly one unit larger than h(w)
[...]. We may visualize this rule by thinking of water cascading down a series of terraces
of different height, with the height corresponding to the labels. Obviously, water will flow
down, and [the eligible edge] condition has the effect of restricting the layout of the terraces
so that the water may flow down only one level in each step [Jun13, sec. 6.6].

In our visualization concept (Fig. 3.2), we show how excess flow e(v) is pushed downwards
the terraces of different height h(v). The primary visualization layer displays the graph
network, the capacity of an edge and its current flow value. The secondary visualizaiton
layer allows to arrange the graph nodes in a 2-dimensional chart, where the axis can be
chosen to be y/x (the usual graph), height/id (so that no nodes overlap) or height/excess.
The algorithm switches between the different axes depending on the current state.5

2/2

4/4

1/3

5/5

1/1

s

1

2

t

4

1

0

s

1

2

t

 5 0 5excess

0

1

2

3

4
height

Figure 3.2: Maxflow concept : The primary visualization layer (left) shows the graph network,
with vertices as circles and edges as lines connecting them. Source and target node are
coloured in green, the current node in red. The labels of the edges denote the current
flow and the maximum capacity in the form flow/cap. The capacity is furthermore
drawn as a thick gray line with a width corresponding to its capacity, and the flow is
drawn on top of it as a thick blue line. The secondary visualization layer (right) shows
the outgoing edges e′ of the current node in the residual graph with dashed lines. The
nodes are currently arranged according to the height/excess coordinate system axes.

5The axes can also be kept fixed based on a user request from TU Ilmenau https://github.com/
adrelino/idp-graph-algorithms/commit/4f145861dfba5f8305a24c0f9cc4263cf2b17dcf
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Chapter 4

Shortest paths

4.1 The shortest path problem with resource constraints
Another basic problem defined on networks is how to traverse a network to get from one
point to another one as cheaply as possible. For this problem we wish to find a shortest
path between two points.
Definition 4.1 (path)
A path P = (e1, e2, ...ep) is a finite sequence of arcs (some arcs may occur more than
once) where the end vertex of ei ∈ E is identical to the start vertex of ei+1 ∈ E for all
i = 1, . . . , p− 1. For simple graphs, a path can be also be written as P = (v0, v1, . . . , vp)
since the edges ei = (vi−1, vi) can be uniquely identified by the start and end vertex. The
length of a path is p [ID05].

Definition 4.2 (SPP)
The ordinary shortest path problem (SPP) is perhaps the simplest of all network problems.
It seeks an (unconstrained) s-t path of minimal cost (or length) between two points. A
real-valued cost function c : E → R is defined on all edges of the graph. The cost of a path
is defined as the sum of the costs of all the edges along the path, that is c(P ) =

∑p
i=1 c(ei).

The problem exists in two variants: shortest paths from a single source (APSP) or between
all pairs (APSP) of vertices.

Definition 4.3 (SPPRC)
A possible generalization of the SPP is the shortest path problem with resource constraints
(SPPRC), where each edge additionally carries a secondary (possibly higher-dimensional)
resource vector or function. A path P is now constrained at the intermediate vertices vi
with lower and upper bounds on the accumulated resource consumptions along the (partial)
paths.
Definition 4.4 (SPPTW)
An illustrative example is the two-resource SPPRC, the shortest path problem with time
windows (SPPTW). In addition to cost c, each edge additionally bears the resource time t.
Thus each edge is associated with the two-dimensional resource vector (t, c) ∀e ∈ E. The
secondary resource time is constrained, while the primary resource cost is unconstrained,
but seeks to be minimized. The accumulated consumptions of the resource time along
a path are constrained at the intermediate vertices along that path by lower and upper
limits, that is the earliest arrival time ta and the latest departure time tb and called the
resource window, denoted as tuples [ta, tb]∀v ∈ V . The objective of the SPPTW is to find
a resource-feasible s-t path P ∗ = (v0 = s, v1, v2, . . . , vn = t) of minimal cost:
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• ∀vj ∈ P ∗ : ta(vj) ≤
∑j
i=1 time(vi−1, vi) ≤ tb(vj)

• cost(P ∗) = min{cost(P )} ∀ feasible s-t paths P

4.2 The label-setting algorithm

We start with the distinction between label-setting [AMO93, ch. 4] and label-correcting
[AMO93, ch. 5] algorithms that solve the ordinary shortest path problem (SPP). The
first label-setting algorithm was suggested by Dijkstra [Dij59].1 It solves the SSSP with
non-negative edge weights and is visualized in [Vel14]. Its runtime is O(|V |2) which can
further be improved to O(|E|+ |V | log |V |) when using a Fibonacci heap for the queue of
active nodes. After a node has been processed, the distance label of the path ending in
that node is permanent and will thus not change in subsequent iterations. The algorithm is
a greedy method and is thus very efficient. On the other hand, label-correcting algorithms
allow negative edge weights and can detect negative cycles. Labels stay temporary until
the very end of the algorithm execution. An example which solves the SSSP with negative
edge weights is the Bellman-Ford algorithm.[Bel58; FF62]2 It has a runtime of O(|V | · |E|)
and is visualized in [Sto13]. An example which solves the APSP is the Floyd-Warshall
algorithm [Flo62; War62]3 with a runtime of O(|V |3) and it is visualized in [BVZ15]. These
two algorithms are dynamic programming approaches.

The recent survey [ID05] gives an overview of algorithms for the solution of shortest path
problems with resource constraints (SPPRC). They provide a generic SPPRC algorithm
based on dynamic programming. Depending on the path selection strategy, the generic
algorithm results in a label setting or label correcting algorithm. We choose the simplest
variant of the SPPRC, the shortest path problem with time windows (SPPTW). The
underlying network must either be acyclic or the resource consumptions for at least one
resource must be strictly positive along a path to allow for a label-setting algorithm.

4.2.1 Dynamic programming solution
An optimal solution of the full problem consists of optimal solutions of partial problems,
that is, the shortest s-t path with time window constrains contains optimal shortest
partial paths s-v for all v on the shortest s-t path. This optimality principle of Bellman
[Bel57] can be written as a dynamic programming (Chapter 2) recursion for time-windows
[ta, tb] ∀v ∈ V and resource vectors (t, c) ∀e ∈ E:

T (P0) = t0a

T (Pi) = max{tia, T (Pi−1) + ti}

Here, T stands for the accumulated consumption of the resource time t along the edges
of a path P . In the recursion case, we take the maximum of earliest arrival time ta and
accumulated time consumption of the prefix path Pi−1 extended along the current edge e,
T (Pi−1) + ti, because waiting at a node is allowed.

1explained in textbooks [AMO93, sec. 4.5],[Cor09, sec. 24.3],[Jun13, sec. 3.7, p. 83]
2explained in textbooks [AMO93, sec. 5.4],[Cor09, sec. 24.1],[Jun13, sec. 3.7, p. 87]
3explained in textbooks [AMO93, sec. 5.6],[Cor09, sec. 25.2],[Jun13, sec. 3.9]
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4.2.2 Feasibility and domination
Fortunately, not all of the dynamic programming partial results are kept. First of all, it
can be the case that T (Pi−1) + ti > tib. This means that the time window at the node is
exceeded. The path or label obtained from above extension is infeasible and thus discarded.
Secondly, path or labels who are feasible, but equal or worse in both time and cost than
other feasible labels can be discarded. A label dominates all labels in its right upper cone
in the chart of cost/time. The set of all such labels is pareto-optimal. Even though we will
finally be interested in feasible, minimum cost labels ending in t, we cannot discard any of
them at intermediate nodes since extensions of one label with lower cost but higher time
might have unfeasible extensions at subsequent vertices along the paths while others with
higher cost and lower time don’t. Discarding labels makes the algorithm faster, but it is
still not as efficient as a greedy (Chapter 2) approach.

4.2.3 Pseudocode

Algorithm 2: Generic Dynamic Programming SPPTW Label Setting Algorithm
Input: digraph G = (V,E) with start node s ∈ V , target node t ∈ V , resource

windows for all nodes and resource vectors for all edges
Output: feasible, pareto-optimal s-t path l∗ with minimal cost

1 (* Initialize *)
2 U ← {(ε, s)} and P ← ∅
3 (* Main Loop *)
4 while ∃l = (∼, v) ∈ U do
5 U ← U \ {l}
6 (* Path extension step *)
7 forall e = (v, w) ∈ E do
8 l′ = (l, w)← EXTEND(l, e)
9 if l′ ∈ FEASIBLE(w) then

10 U ← U ∪ {l′}

11 P ← P ∪ {l}
12 (* Dominance step *)
13 forall v ∈ V \ {s} do
14 U,P ← REMOVE-DOMINATED(U,P )

15 (* Filtering step *)
16 l∗ ∈ P | cost(l∗) == min({cost(l = (∼, t) ∈ P )})

The different states of the algorithm are: 1. INIT (lines 1-2), 2. MAINLOOP (lines
3-5), 3. PATHEXTEND (lines 6-8), 4. PATHEXTEND_FEASIBLE (lines 9-10), 5.
LABEL_PROCESSED (line 11), 6. DOMINANCE_STEP (lines 12-13), 7. DOMI-
NANCE_RESIDENTNODE (line 14) and 8. FILTERING_STEP (lines 15-16). For the
detailed description of these states we refer to our web application.
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4.2.4 Visualization concept
In our visualization concept (Fig. 4.1), we show how paths are extended and discarded. The
primary visualization layer displays the graph network, the resource vector of an edge and
the time-window at the vertices. Paths can be highlighted. The secondary visualization
layer displays the corresponding labels in a 2-dimensional coordinate system, where the
axes are cost/time. It also displays the time window of the current node as a rectangle.
The labels to be displayed can be filtered by their resident nodes by selecting them, which
allows to view the pareto-frontier of a node. By clicking on a label, the corresponding path
is highlighted. These filters change dynamically during algorithm execution to highlight the
paths and labels of the label currently extended, all labels resident in a node for dominance,
or the minimum cost path for the filtering step.
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Figure 4.1: SPPTW concept: The primary visualization layer (left) shows the graph network,
with vertices as circles and edges as lines connecting them. The labels of the edges
denote the resource vector in the form (time,cost) and the labels above the nodes the
time-window in the form [arrival,departure]. The secondary visualization layer (right)
shows the paths of the labels resident in the currently selected node in a cost/time
coordinate system. The time-window of the currently selected node t is drawn as a
blue rectangle, whose corresponding circle is drawn with a thick blue border in the
primary layer. The currently selected label f is drawn with a thicker path in both
primary and secondary visualiztion layer. The pink color is only used in the very
end of the algorithm execution, the above is a snapshot during the filtering step. It
corresponds to the solution e of the algorithm, a time-feasible s-t path with time 12
and minimal cost 10.
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Chapter 5

Implementation

The implementation is an evolution of previous web applications for the visualization of
graph algorithms [Sto13; Vel14; Sef15; BVZ15; Zön15]. However, the requirements for
graphs with arbitrary resources, a secondary visualization layer and high interactivity
urged us to reimplement large parts of the existing codebase using different technologies
(Section 5.1) while still maintaining the same look and feel. In the process, a complete
understanding of the interplay between the different components was acquired, which
allowed us to refactor them systematically to achieve a better software design (Section 5.2).

5.1 Web technologies
Web technologies form the basis of our implementation. The Mozilla Developer Net-
work (MDN)1 is an excellent reference, which subdivides the technologies into basics
(Section 5.1.1), scripting (Section 5.1.2) and graphics (Section 5.1.3). Furthermore, we use
two JavaScript Software libraries (Section 5.1.4) to facilitate certain tasks.

5.1.1 Basics: HTML, CSS, HTTP and AJAX
The HyperText Markup Language (HTML) is used to define the static content of the web-
page. Each webpage contains just one HTML file, maxflow-push-relabel/index_en.html
or spp-rc-label-setting/index_en.html, for all its static content. These serve as the
entry point for our single-page web application and contain all language-specific features.
For localization purposes one needs to modify only this file. Cascading Style Sheets (CSS)
are used to describe the appearance or presentation of the content on the webpage. They
can be used both for HTML (library-d3-svg/css/style.css) and for SVG Graphics
such as our graph (library-d3-svg/css/graph-style.css). The Hypertext Transfer
Protocol (HTTP) is used to deliver HTML and other hypermedia documents on the Web.
The basic files we need everywhere are statically linked from within our HTML page
with <link href="..."> for CSS and <script src="..."> for JavaScript files. By using
asynchronous JavaScript and XML (AJAX) we can issue HTTP requests dynamically, for
example when selecting another sample graph, without the need to completely reload the
entire page.

1https://developer.mozilla.org/docs/Web
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5.1.2 Scripting: JavaScript, DOM, Web APIs, HTML5 and Node.js
JavaScript is the scripting language that runs natively in a browser. It was originally
developed to add interactivity and other dynamic features to a webpage. This is achieved
by manipulating the Document Object Model (DOM), a programming interface for HTML,
XML and SVG documents. It provides a structured representation of the document as a tree
which can be modified and extended using JavaScript and other languages. The JavaScript
language contains standard built-in global objects, e.g. the JSON2 object with methods
for parsing JavaScript Object Notation (JSON), used for serialization of algorithm state to
provide the replay functionality. Web Application Programming Interfaces (Web APIs)
complement the standard built-in global objects to provide a way to access the browser’s
advanced functionality programmatically. We make use of this functionality to serialize
and download dynamically generated SVG using XMLSerializer.serializeToString()3

and WindowBase64.btoa()4 and we make use of the FileReader.readAsText()5 for the
local graph upload functionality. Because of their importance, the APIs and the DOM are
now fundamental parts of the new HTML5 specification, which extends the HTML markup
with new syntactic features such as <video>, <audio>, <canvas> and <svg> tags and
the support for mathematical formulas with MathML markup.

Server-side scripting using Node.js

However, the JavaScript language itself is not restricted to client-side scripting in the
browser, it can also be used for server-side scripting using the Node.js host environment.
Nowadays there is a huge JavaScript ecosytem consisting of different open-source packages
that allow to use JavaScript for all kinds of programming. We used NPM as package
manager and Grunt as build tool to implement a simple web-server for development
purposes. This circumvents some browsers’ security settings of disallowing AJAX requests
when files are served locally, which would prohibit us from loading different graphs.6

JavaScript - a fully featured programming language

JavaScript is not just a lightweight scripting language, it is actually a fully featured pro-
gramming language. It has matured a lot during its standardization process (ECMAScript),
a complete reference is given by [Fla11]. It is an interpreted, prototype-based, multi-
paradigm dynamic scripting language with first-class functions. It supports imperative,
object-oriented, and declarative or functional programming styles. As such, it is actually
superior to more traditional languages such as Java or C++, which only made a functional
programming style possible in their latest editions of Java 7 and C++ 11 through lambdas.
The object-oriented part of JavaScript works a little different than in the traditional

2https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/JSON
3https://developer.mozilla.org/docs/Web/API/XMLSerializer
4https://developer.mozilla.org/docs/Web/API/WindowBase64
5https://developer.mozilla.org/docs/Web/API/FileReader
6In fact, this restriction is only present in Google Chrome and can be circumvented when starting it

with the --allow-file-access-from-files flag. The latest versions of Firefox and Safari don’t seem to
have this restriction anymore as it was already observed by [Fei16]. Another alternative would be to install
a production-quality web-server such as Apache, but this is overkill during development.
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languages, because it relies on prototype object based inheritance instead of class based
inheritance. A good introduction to the language suitable for beginners covering the impor-
tant concepts of scope and closure of the functional style and prototypal-based inheritance
of the object-oriented style is given by [Hav15; RB13]. While being an incredibly expressive
and flexible language, the original creators of JavaScript initially made a few bad design
decisions, but it is too late to remove them completely from the language nowadays. This
is why it has become the world’s most misunderstood programming language according
to Douglas Crockford, whose advice is to stick to JavaScript: The Good Parts [Cro08],
which is the title of his advanced book about the language features one should use and the
ones to be avoided. Since we partly follow the object-oriented programming style to create
reusable software components, we had to deal with good software design, which will be
covered later (Section 5.2). To harness the full power of JavaScript effectively, e.g. with
statics, singletons and different code-reuse patterns, we recommend [Her12].

5.1.3 Graphics: SVG vs. Canvas

SVG and Canvas are part of HTML5 and both are used to display interactive graphics on
a webpage. The previous interdisciplinary projects were based on Canvas, which allows
for dynamic, scriptable rendering of raster-based 2D graphics using JavaScript. It is a
low-level, procedural model that updates a bitmap pixel by pixel using drawing routines.
Once an object is drawn, it is forgotten by the browser. The complete scene thus has to be
redrawn after any changes. The quality of the resulting bitmap is resolution dependent,
leading to poor text rendering and scaling capabilities. On the other hand, Scalable Vector
Graphics (SVG) is a high-level language for describing vector-based 2D graphics using
XML notation, in complete analogy to HTML which describes page layout using XML
notation. Similar to the HTML DOM which allows to access individual nodes of the page
tree, individual shapes of the vector graphic can be accessed and modified via an SVG
DOM, the scene graph. This allows to modify and re-render only a subset of the scene.
Furthermore, it allows to attach JavaScript event handlers to individual shapes, easing
interaction capabilities like clicks on nodes and edges or resources in our graph editor.
Because of its advantages over Canvas, the previous interdisciplinary projects have lately
been migrated to SVG [Fei16] and all current projects [Fei16; Fis16] already use our beta
SVG implementation, profiting from its new features.

Arrowhead markers for directed edges

SVG primitives such as circle and line are used to represent a graph. For digraphs, we
need directed arrows. These can be added to a line by setting its marker-end style to a
previously defined marker url, e.g. url(#arrowhead2). The marker definition is:
<marker id="arrowhead2" refX="24" refY="4" markerUnits="userSpaceOnUse" markerWidth="24"

markerHeight="8" orient="auto"><path d="M 0,0 V 8 L12,4 Z"></path></marker>

At its core is the path element defining a filled triangle using SVG’s mini plotting
language: M 0,0 (move to the origin), V 8 (draw a vertical line up to 8,0), L12,4 (then a
line to 12,4, which is the tip of the arrow/triangle), Z (go back to the origin and fill the
resulting polygon). By using orient="auto-start-reverse" we can get arrows in the reverse
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direction, which we use to display backward edges of the residual graph using just the
original edge. The concurrent project [Fei16] used an early version of our implementation
which had the limitation that the marker definition was defined in the HTML page for each
combination of arrow size and colour. We now removed most of the shortcomings. By using
markerUnits="userSpaceOnUse" the size of the marker is independent of the line thickness,
which previously led to misplaced and oversized markers when a line was highlighted by
drawing it thicker. Above code is added dynamically via JavaScript to an invisible SVG
element on the webpage so that we don’t need to define it in HTML, easing reuse.7

Edge label positioning and anchor point

Edge labels should be positioned at the middle of a line [Fei16]. If the anchor point of
a text element is in its middle, the line passes directly through the label, rendering it
unreadable. The text should have a small offset from the line. We came up with a simple
way that always gives readable edge labels by changing the anchor or origin of the text
element to one of its four corners depending on the line orientation (Fig. 4.1). For this we
used the text-anchor style and the dominant-baseline property of svg’s text element.
In previous Canvas-based projects, offsets had to be computed explicitly depending on the
the text length, which was very error-prone.

Export functionality for vector graphics

The small file size and sharp images of this report are possible because all figures are
vector graphics. In our web applications, we implemented a functionality allowing to
download all SVG graphics. This export functionality is an important contribution for
future scientific publications in discrete math, because it allows to easily include high-quality
graph drawings at minimal file size into any documentation. Exporting the dynamically
generated SVG from our webpage into this PDF document required some tricks. All styles
regarding the appearance of nodes are defined in CSS files to be shared among different
SVG graphics of the page. These need to be inlined into the <defs> section of the SVG
DOM of each graphic before the download. In the same section, we also have to copy our
shared marker definitions for directed edges, since otherwise our exported graph would
look like an undirected graph. The modified SVG DOM root node is serialized to string
and base64 encoded using above Web API’s so that it can be downloaded by a simple
click on a link in the browser. The downloaded, standalone SVG file can be opened by
browsers and image processing or vector graphics software. One can use free software such
as inkscape.org to convert the SVG vector graphic into a PDF vector graphic which is
recognized by the LATEX command \includegraphics used throughout this report.8

7It is important that the same definition exists only once per web page and not once per SVG element,
because otherwise Firefox does not render the arrows correctly. Chrome however is unaffected by this.

8However, there is a bug https://bugs.launchpad.net/inkscape/+bug/811862 in Inkscape, it does
not support CSS’ dominant-baseline property and text-anchor style for vertical and horizontal text
alignment. Thus, the labels for nodes and edges are misplaced directly on top of the edges. A workaround
is to open the SVG with a browser and using the print dialog to save it to PDF. This PDF can then be
opened with Inkscape and cropped, the previously mentioned problems are no longer present.
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5.1.4 Libraries: MathJax, jQuery (UI) and D3.js
JavaScript libraries were used to facilitate certain tasks. MathJax allows to write LATEX
math equations in HTML and render them nicely on a webpage via HTML5’s MathML.
The library jQuery (adding the global symbol $ to the JavaScript runtime) was already
used in previous projects for easy HTML DOM element selection and modification using
the concise syntax $("#tabs") instead of built-in lengthier code. Its plugin jQuery UI is
used for the Graphical User Interface (GUI) of the application.

D3.js’ core concept

DOM element selection and modification can also be done with another library, Data
Driven Documents (D3 or D3.js) [BOH11], with the syntax d3.select("#tabs"). The
real power of the library lies in the fact that it can select multiple elements at once using
selectAll() and bind them to data using data(), which is called a data join (Fig. 5.1).
The result of the join are enter, update and exit selections. New elements are added to the

Data

Enter Update

Elements

Exit

Figure 5.1: D3’s data join: Data points joined to existing elements produce the update (inner)
selection. Leftover unbound data produce the enter selection (left), which represents
missing elements. Likewise, any remaining unbound elements produce the exit selection
(right), which represents elements to be removed. From Thinking with Joins [Bos12].

enter selection using append(), existing elements of the update selection modified using
style() or attr(), and old elements of the exit selection removed with remove().9 This
is the General Update Pattern, III [Bos16], which is nicely illustrated using another of D3’s
strengths, transitions. These are used in our applicaiton to improve the understanding of
the transitions between states of our algorithms. For the secondary visualization layer, we
needed even more of D3’s concepts, in particular axes and scales, because the numbers we
want to visualize need to be converted to pixel coordinates that fit onto the screen. We
recommend the books [Mur13; Zhu13; Mee15] as an introduction to these techniques.

9To get familiar with D3’s basics I suggest running and actively modifying small code snippets by
yourself, which can be done directly in the web-based presentation of this interdisciplinary project:
http://www.adrian-haarbach.de/idp-graph-algorithms/presentation/slides.html#/2/9
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5.2 Software design
We improved code quality and maintainability by adhering to object oriented programming
best practices of high cohesion and low coupling (Fig. 5.2b). The separation of the
components now fits the Model-View-Controller (MVC) design pattern (Fig. 5.2a), which
was already applied partially in previous work, even better. A good reference explaining
how to apply these patterns using JavaScript is [Ste10].

MODEL

VIEW CONTROLLER

US
ES

MANIPULATES

SEES

UPDATES

USER

(a) Model-View-
Controller(MVC)10

• Cohesion refers to the degree to which the elements of a class
belong together, suggestion is all the related code should be
close to each other, so we should strive for high cohesion and
bind all related code together as far as possible. It has to do
with the elements within the class.

• Coupling refers to the degree to which the different classes
depend on each other, suggestion is all modules should be
independent as far as possible, that’s why low coupling. It has
to do with the elements among different classes.

(b) high cohesion, low coupling11

Figure 5.2: Important design pattern and best practices in object oriented software engineering

The improvements make it easier to reuse and extend the code in other projects. Thus,
an early prototype of our implementation already served as a base for concurrent interdis-
ciplinary projects [Fis16; Fei16]. These described some details of our implementation and
its benefits over previous approaches in German. Here, we want to describe the overall
concept and all improvements made in a unified manner and in English to serve as a good
starting point for future projects. The chapter is organized into sections according to the
MVC principle.

5.2.1 Model
The graph Model of previous work was not very clean and thus substantially refactored
and simplified while new features were added. It contained code concerning the naming,
colouring and layout of nodes and edges and methods to draw them on Canvas and to
detect clicks using coordinate comparisons. However, the Model should be oblivious to the
actual graph drawing and interactions, since these belong to the View or the Controller.
Moreover, the previous graph Model only allowed for a single scalar weight to be defined
on edges. We extended it so that an arbitrary number of resources can be defined on both
the edges and the nodes. This was especially needed for the SPPTW. Furthermore we
added an associative array to nodes and edges to store the changing algorithm state, easing
the replay functionality.

10https://en.wikipedia.org/wiki/Model-view-controller
11http://stackoverflow.com/questions/14000762/low-in-coupling-and-high-in-cohesion
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Graph
instance : Graph
getNodes() : [GraphNode]
getEdges() : [GraphEdge]
stringify(graph : Graph) : String
parse(text : String) : Graph
addChangeListener(callbackFp : function)

GraphNode
resources : []
state : {}
x : number
y : number
getInEdges() : [GraphEdge]
getOutEdges() : [GraphEdge]

GraphEdge
resources : []
state : {}
getStartNode() : GraphNode
getEndNode() : GraphNode

ResidualEdge Label

nodes
*

edges
*

start,end
1

*
in,out

eligible
*

1
1..2 resident

*

resident
1

path
*

Figure 5.3: UML class diagram for the Model. Static attributes and methods are underlined.
From a high-level perspective, we model a Graph as a composition of nodes and edges
with associations between these two entities reflecting the network structure: Each
GraphEdge has a start and an end node, while each GraphNode has an arbitrary
number of incoming and outgoing edges. Arrays for resources denoted by [] and
associate arrays for state variables denoted by {} are attributes of both nodes and
edges. ResidualEdge and Label are two concepts that we needed for the implementation
of our algorithms. These are primarily associated with GraphEdge, either 1:1 or 2:1 for
the first or 1:n for the latter. For performance reason, we also established associations
with GraphNode. A GraphNode can be queried for all its current outgoing eligible
ResidualEdges, which is needed for applying a push operation. Label and GraphNode
are associated bidirectionally: a Label needs to know its resident vertex so it can
check path extensions easily for feasibility using the time-window of the vertex, while
a GraphNode can be queried for all the Labels ending in it so we can apply dominance
rules to them.

The new Graph class, composed by its subclasses GraphNode and GraphEdge, achieves
high cohesion as can be seen in the UML diagram (Fig. 5.3). The static serialization and
deserialization methods parse and stringify were extended to support arbitrary resource
vectors. In previous work, the serialization capabilities were unaccessible to the end user.
We provide a link to download a graph in its textual representation, which is backwards
compatible to previous work. Additionally, a user can now locally upload a previously
saved graph right from the browser using HTML5’s FileReader (Section 5.1.2) capabilities.
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The previous raw AJAX (Section 5.1.1) calls to load a saved sample graph from a server
are now nicely wrapped in d3.text calls.
The loading of a graph, either from a local file or a remote server, is an asynchronous

operation. According to MVC (Fig. 5.2a), the Model should update the View (Section 5.2.2)
after any modifications to it, e.g. when another sample graph was selected or uploaded.
We achieve low coupling (Fig. 5.2b) between the different components through the use of a
static callback function registration method addChangeListener (Fig. 5.3). All functions
of the View that have been registered will be called after the graph has been loaded
asynchronically without errors. The current graph is made available to the View and the
Controller (Section 5.2.3) via the static instance object of Graph. This singleton pattern
allows the Controller to easily access and manipulate the Model and the View to easily
update its visual representation after any changes.

5.2.2 View

A complete rewrite of the graph visualization code was necessary because of the different
drawing concepts of SVG vs. Canvas (Section 5.1.3). D3.js is used extensively to achieve
minimal code size with high expressiveness. The UML diagram (Fig. 5.4) shows all View
classes in blue. The main result is the abstract GraphDrawer class, which should be used
as a base class in all future projects. Full customization is easily possible by overwriting
methods that will be called from inside of D3’s data join (Section 5.1.4), in particular
onNodesEntered and onEdgesEntered for the enter selections and onNodesUpdated and
onEdgesUpdated for the update selections. For simple casess, it is sufficient to overwrite
the methods edgeText and nodeText to customize the text that is drawn next to an edge
or on top of a node. Per default these are the resource vector of the edge wrapped in ()
and possible constraints specified on the node wrapped in []. The method nodeLabel
returns the text displayed inside a node, typically a node’s id. This method is typically
overwritten to label start and end vertex with s and t. Any SVG based visualization can
be saved to disk in vector format, for which styles and marker definitions are automatically
inlined (Section 5.1.3). A Logger utility which allows to log algorithm execution messages
with up to 3 indentation levels was furthermore developed. The log message data is joined
with HTML list elements <ol> and <ul> using D3, which is not only limited to modifying
SVG DOM, it can also handle HTML DOM. This class is very useful for development, but
also for the final algorithm to display dynamic messages for each state of the algorithm
and a complete trace of algorithm execution. The secondary visualization layers of each
algorithm, namely the LabelDrawer and the ResidualGraphDrawer are also considered
part of the View. The LabelDrawer (Fig. 4.1) is used to visualize the Model Label by
plotting its associated path with accumulated resource consumptions in a 2-dimensional
height/cost chart together with the resident vertex’ time window resource constraints as a
rectangle. The ResidualGraphDrawer (Fig. 3.2) is used to display all outgoing residual
edges of the currently active vertex which are considered for push or relabel operations.
By limiting the display in such a way, we avoid the need for multiedges, because either
only the forward or only the backward residual edge e′ of the original edge e is shown
at any time. The ResidualGraphDrawer allows to change the arrangement of nodes by
changing the coordinate axes. While the original graph layout is obtained with y/x axes,
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5.2 Software design

<<abstract>>
GraphDrawer

svg : <svg>
onNodesEntered(selection : [])
onNodesUpdated(selection : [])
onEdgesEntered(selection : [])
onEdgesUpdated(selection : [])
edgeText(d : GraphEdge) : String
nodeText(d : GraphNode) : String
nodeLabel(d : GraphNode) : String

LabelDrawer ResidualGraphDrawerLogger

GraphEditor LabelSettingAlgorithm PushRelabelAlgorithm

<<abstract>>
Tab

init()
activate()
deactivate()

GraphEditorTab
setGraphHandler()

AlgorithmTab
startFastForward()
stopFastForward()

Figure 5.4: UML class diagram for View (blue) and Controller (green). The multiplicities are all
1:1 and thus not drawn. The abstract base class GraphDrawer of the View forms the
basis for all graph-based visualizations. The Logger and the secondary visualization
layers LabelDrawer and ResidualGraphDrawer are part of the View, but only the latter
one displays a graph and thus extends the GraphDrawer. The abstract base class
Tab of the Controller is extended to form a GraphEditorTab and an AlgorithmTab.
Finally, the actual GraphEditor and the two implemented algorithms are associated
with a Tab while inheriting from the GraphDrawer. Each algorithm has a secondary
visualization layer, we model this relationship with an aggregation.

we can rearrange the nodes with height/id or height/excess axes in order to visualize the
concepts of height function and excess. This layered view with the height on the y axis
allows to easily see which residual edges are eligible by checking if the difference of their
node’s heights is exactly one.
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Chapter 5 Implementation

5.2.3 Controller
The UML diagram (Fig. 5.4) shows all Controller classes in green. The basis of the
Controller is the new abstract class Tab, which listens to changes of a Tab’s visibility. The
View of a Tab is defined in our HTML page with jQuery UI. The methods init, activate
and deactivate should be overwritten to react to these visibility changes. A Tab is
extended to form a GraphEditorTab and an AlgorithmTab with more specific functionality.
The GraphEditorTab is used to wire together the events when another sample graph was
selected or uploaded. These events trigger a call to the setGraphHandler method. This
tab is used as an attribute of our new GraphEditor, which extends the GraphDrawer but
is considered part of the Controller since it wires together different functionality. It comes
with support for modifying graphs with an arbitrary number of resources on nodes and
edges. This is achieved by rendering a number spinner HTML DOM element for each
resource on top of the SVG network visualization, which allows to change the graph’s
underlying data Model conveniently. The AlgorithmTab connects the events of the fast
forward jQuery UI buttons defined in the HTML page. Calls to the startFastForward
and stopFastForward methods result from these events. It furthermore has a Logger
instance of the View as an attribute, which allows to easily log and visualize algorithm
execution. The AlgorithmTab is an attribute of the two main classes we developed for our
algorithms, the LabelSettingAlgorithm and the PushRelabelAlgorithm. These extend the
GraphDrawer and have an aggregation to their secondary visualization layers of LabelDrawer
and ResidualGraphDrawer. The above design made it possible to separate most framework-
related code from our main classes. If another algorithm is implemented in future work,
one just has to copy and modify the LabelSettingAlgorithm or PushRelabelAlgorithm
classes.
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Chapter 6

Conclusion

This report first summarized the related work and the background needed for the graph
problems and algorithms visualized in this project. We provided mathematical definitions
for the maxflow and the SPPRC problems. Important concepts of the push-relabel and
the label-setting algorithms were presented and their pseudocode provided. We motivated
the need for a secondary visualization layer concept and implemented it. Two interactive
web applications for advanced graph algorithms were developed. These can be accessed
freely and the source code is made available as open source to ease further extensions. New
technologies such as D3.js and SVG have been introduced to achieve high interactivity. In
the process, we refactored or reimplemented large parts of the core code basis resulting in
an improved software design, which is thoroughly documented to serve as a reference for
future web applications building upon our implementation.

Future work

The following are possible directions for further extensions:

• Implement the highest-label selection rule for the push-relabel algorithm so it can be
compared to the current FIFO selection rule.

• Allow edges of negative weight in the SPPRC and extend our label-setting algorithm
into a label-correcting algorithm that solves this problem.

• Over the years, a lot of web applications have been developed independently by
different students. A lot of code was copied and partially modified, which resulted
in a huge amount of duplication. The duplication of JavaScript files was minimized
through the improved software design of this project. However, the static HTML
files are still copied and adapted for each new project, even though some parts don’t
change at all. To overcome this issue, one could generate the HTML sites dynamically
on a server using PHP, which is unattractive because our apps are client-side only.
The nicest solution would be the W3C working draft of HTML Imports, which
would allow to split HTML into parts and load the parts just like CSS or JavaScript.
However, it is only implemented in Chrome so far.1 The most practical way in my
opinion is to split up the HTML file into parts and then use the JavaScript ecosystem
to concatenate the pieces to turn it into a complete HTML page before deployment.

1https://www.w3.org/TR/html-imports/ and http://caniuse.com/#search=imports
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