
Survey of Higher Order Rigid Body Motion Interpolation Methods
for Keyframe Animation and Continuous-Time Trajectory Estimation

Adrian Haarbach 1,2 Tolga Birdal 1,2 Slobodan Ilic 1,2

1 Technische Universitat München, Germany 2 Siemens AG, Munich, Germany
adrian.haarbach@tum.de tolga.birdal@tum.de slobodan.ilic@siemens.com

Abstract

In this survey we carefully analyze the characteristics of
higher order rigid body motion interpolation methods to ob-
tain a continuous trajectory from a discrete set of poses.
We first discuss the tradeoff between continuity, local con-
trol and approximation of classical Euclidean interpolation
schemes such as Bézier and B-splines. The benefits of the
manifold of unit quaternions SU(2), a double-cover of rota-
tion matrices SO(3), as rotation parameterization are pre-
sented, which allow for an elegant formulation of higher or-
der orientation interpolation with easy analytic derivatives,
made possible through the Lie Algebra su(2) of pure quater-
nions and the cumulative form of cubic B-splines. The same
construction scheme is then applied for joint interpolation
in the full rigid body pose space, which had previously been
done for the matrix representation SE(3) and its twists, but
not for the more efficient unit dual quaternion DH1 and
its screw motions. Both suffer from the effects of coupling
translation and rotation that have mostly been ignored by
previous work. We thus conclude that split interpolation in
R3 × SU(2) is preferable for most applications. Our final
runtime experiments show that joint interpolation in SE(3)
is 2 times and in DH1 1.3 times slower - which furthermore
justifies our suggestion from a practical point of view.

1. Introduction

Choosing a suitable trajectory representation to model
the 3D motion of a rigid body is an important design deci-
sion of interpolation, filtering and optimization techniques
in graphics, vision and robotics. Compared to a discrete
set of dense poses, higher order methods produce a smooth,
time-continuous curve by weighted summation of a sparse
set of base poses acting as temporal basis functions. Com-
bined with a suitable orientation parameterization, the re-
sulting curve must fulfill a few important properties to be
useful for keyframe animation in graphics and continuous-
time trajectory estimation and optimization in robotics:

• Local control so a pose update has bounded influence.
• C2 continuity fulfilling physical smothness constraints.
• No singularities to globally represent all orientations.
• Few parameters to allow for efficient computation.
• Analytic derivatives to be able to synthesize angular ve-

locity and linear acceleration measurements.

However, choosing a representation is not easy because
there is no perfect solution: 1) The interpolation method is
always [26] a trade-off between interpolation vs. approxi-
mation, high continuity, local vs. global control and compu-
tational complexity. 2) There is no minimal rotation param-
eterization without singularities [10]. Every additional pa-
rameter used in a singularity-free representation incurs ad-
ditional constraints on the parameters that need to be main-
tained during interpolation and optimization.

In this paper we compare many existing methods for
camera trajectory interpolation providing an intuitive visual
and experimental comparison among them and highlighting
insights that are not obvious. In the end we furthermore
briefly introduce two novel formulations (ScFus, DLFus) of
higher order dual quaternion interpolation as efficient alter-
natives to the usual joint interpolation with SE(3) matrices.

Since animation techniques are best explored interac-
tively, we provide our web and C++ applications to in-
teract with and visualize Euclidean, orientation and rigid
body motion interpolation methods that produced all our
figures and runtime evaluations as well as an overview ta-
ble of all methods: http://adrian-haarbach.de/
interpolation-methods.

The paper is organized as follows: After the related work
(Sec. 2), we will first discuss the confronting requirements
of local control, continuity and interpolation vs. approxi-
mation of the two most popular higher order interpolation
methods (Sec. 3) in Euclidean space. A comparison of dif-
ferent orientation interpolation methods (Sec. 4) follows.
Then we compare approaches for the full rigid body motion
interpolation (Sec. 5). After a quick experimental runtime
evaluation of the different methods (Sec. 6), we briefly con-
clude our findings (Sec. 7).

http://adrian-haarbach.de/interpolation-methods
http://adrian-haarbach.de/interpolation-methods

2. Related Literature

Orientation interpolation methods were first explored
in graphics due to the need to interpolate smoothly between
camera frames for animation. The rotation parameters were
usually interpolated in Euclidean space, with subsequent
re-orthogonalization in case of rotation matrices or renor-
malization in case of unit quaternions, or alternatively, Eu-
ler angles were used [4]. Out of these three options, only
Quaternion linear blending (QLB) (9) (QLERP in [18]) fol-
lows the shortest path between the keyframes in rotation
space, but at the cost of non-constant rotational speed due to
the uneven angular spacing of the intermediate quaternions
resulting from the renormalization [12].

The correct way to interpolate between two unit quater-
nions with constant rotational speed is on the surface of the
sphere S3, discovered by Shoemake [28] in 1985 and thus
termed Spherical linear interpolation (SLERP) (14). Two
years later, the same author [29] extends his idea to higher
order interpolation of sequences of unit quaternions. Using
bilinear parabolic blending of 4 base quaternions located
at the corners of a quadrangle and a special computation for
the positions of the inner control points, it is possible to gain
C1 continuity. Thus this geometric construction method was
termed Spherical cubic spline quadrangle (SQUAD) (15).

Another 8 years later, in 1995, Kim et al. [21] took an
important step towards even higher order orientation inter-
polation by extending the algebraic construction methods
of spline (e.g. Hermite, Bézier, B-spline) curves from R3

to SO(3). The key to their success lies in the usage of the
manifold structure of unit quaternions H1 and the transfor-
mation of Euclidean interpolation methods to cumulative
basis form, allowing to formulate a curve in SO(3) as a
product of simple unit quaternion curves, each represent-
ing the relative orientation difference between neighbouring
key frames. Of particular interest is their cubic Cumulative
B-spline curve (CuBsp) (17) since it allows for C2 continu-
ity with local control.

Rigid body motion interpolation methods based on this
idea however took another 18 years to be transfered from
graphics to vision and robotics by Lovegrove et al. through
the Spline Fusion twist curve (SpFus) [22, 27], which the
authors use for continuous-time estimation in rolling shutter
camera calibration for SfM and visual-inertial SLAM. As a
continuous-time trajectory representation, they use CuBsp,
but applied to SE(3) instead of quaternions. They justify
the choice of this joint parameterization because it models
torque-minimal trajectories. However, its inherent coupling
of translation and rotation is suboptimal for this kind of ap-
plication, a fact first mentioned briefly in 2014 in Forssen’s
lecture slides [7], one year after Spline Fusion [22] first ap-
peared. This argument is only very recently, in 2018, ex-

panded upon in the upcoming journal article by Ovren [25].
Split parameterization of rotation and translation, as usu-

ally done in graphics, furthermore avoids the costly matrix
multiplications necessary for SE(3) trajectory evaluations.
Efficient quaternion algebra [21] can be used instead on
the rotation curve. When implementing analytic derivatives
efficiently e.g. (19), this splitting becomes even more im-
portant to avoid superfluous computations of uneccessary
second-order derivatives of the rotation part.

Continuous-time estimation theory predates Spline Fu-
sion [22], since it was introduced to the robotics domain
in 2012, in particular to move from discrete to continuous-
time simultaneous localization and mapping (CT-SLAM)
[8], with the following benefits: 1) High-rate sensors such
as an inertial measurement unit (IMU) capture a lot of data,
which in discrete estimation methods would require to in-
clude a pose variable in the state for each measurement,
making it very large. 2) Continuously capturing devices
such as light detection and ranging (LiDAR) scanners or
rolling shutter cameras, when moved during acquisition,
produce distortion artefacts if their measurements are han-
dled as discrete snapshots in time. However, even in their
subsequent journal article [9] which appeared after Spline
Fusion [22], the authors interpolate rotation in Euclidean
space using a non-cumulative B-spline of Cayley-Gibbs-
Rodrigues vector coefficients, which has singularities and
which results in non-constant rotational speed between two
keyframes, making the synthesised IMU measurements un-
stable. A more promising direction is taken by the journal
article [30], extending the theory of the cumulative cubic B-
spline unit quaternion curves [21] to general Lie groups and
arbitrary spline order. The most surprising discovery in the
experiments was the strong influence of the spline order on
the expressiveness of the curve.

Dual quaternion approaches did not receive the same
attention in continuous-time estimation, even though they
were used successfully for rigid transformation blending in
skinning [15, 16, 17], where SLERP was extended to Screw
linear interpolation (ScLERP), and for a fast approxima-
tion, QLB to Dual quaternion linear blending (DLB). Only
recently, their usefulness for inter- and extrapolation [3] and
camera pose filtering [2] is shown, with an extensive treat-
ment of their differential geometry nature. However, to the
best of our knowledge, they were so far only used to define
piecewise C0 curves, not inside higher-order construction
schemes. Geometrically, dual quaternions and their tangent
representation as screw motions [5] are equivalent to the
SE(3) matrices and se(3) twists, meaning they exhibit the
same coupling of rotation and translation, but the storage
size is lower and, even more importantly, their exponential
and logarithmic maps can be more efficiently implemented.

3. Euclidean interpolation methods

Linear interpolation (LERP) The straight line connect-
ing p0,p1 ∈ Rx with u ∈ [0, 1] is given by:

LERP(p0,p1, u) = (1− u)p0 + up1 (1)

For more points, piecewise linear interpolation results in
straight line segments for each consecutive pair of points.
Piecewise curves interpolate all points, have local control
and low complexity, but are only C0 continuous, meaning
that the velocity is piecewise continuous and acceleration is
infinite at the control points and 0 elsewhere. Thus, they
cannot represent smooth motions.

Bézier curve To gain higher order continuity, one can ap-
ply (1) to pairs of n + 1 consecutive control points iter-
atively. This geometric construction scheme (Fig. 1) by
repeated linear interpolation is known as the de Castel-
jau algorithm (Mortenson [24] ch.4), recursively defined
by p

(0)
i = pi and p

(k)
i = (1 − u)p

(k−1)
i + up

(k−1)
i+1 for

i ∈ [0, n − k], k ∈ [1, n], resulting in a curve of degree
n. The weights of the control points pi are exactly the
Bernstein polynomialsBni (u) =

(
n
i

)
ui(1−u)n−i,p(u) =∑n

i=0B
n
i (u)pi (Farin [6] ch.5) which allow for an explicit

curve representation in matrix form (Parent [26] p.460). A
Bézier curve interpolates the first and last control point,
while the inner ones are approximated. As a polynomial,
a Bézier curve is easily differentiable. However, the degree
n of the curve grows linearly with the number of control
points n+ 1. High degree curves suffer from the oscillation
problems inherent to high order polynomials and also have
a high complexity. Additionally, they have global control,
meaning a base pose update affects the whole curve.

(a) linear (b) quadratic (c) cubic

Figure 1: De Casteljau construction (top) of Bézier curves of de-
gree 1, 2 and 3 evaluated at u = 0.75 ∈ [0, 1]. Control points
are associated by colour with their respective weight, given by the
Bernstein polynomials basis of the corresponding degree (bottom).

B-spline is a piecewise polynomial function and a gen-
eralization of a Bézier curve. It is defined over a knot se-
quence {τi}, τi ≤ τi+1, each knot associated to a con-
trol point pi, which allows to decouple the degree k − 1
of the curve from the number n + 1 of control points, in
contrast to the Bézier curve. The B-spline curve p(τ) =∑n
i=0N

k
i (τ)pi is a weighted sum of B-spline basis func-

tions Nk
i (Farin [6] ch.8), which can be computed (Fig. 2)

using the de Boor algorithm (Mortenson [24] ch.5), recur-
sively defined by N0

i (τ) = 1τ∈[τi,τi+1) and Nk
i (τ) = (1−

αi,k)Nk−1
i−1 (τ) + αi,kN

k−1
i (τ) with αi,k = τ−τi

τi+n+1−k−τi ,
where the weights αi,k change at each iteration. A new
global time variable τ ∈ [τ0, ..., τn+1] is introduced while
the parametric variable u = τ−τi

τi+1−τi ∈ [0, 1] with τ ∈
[τi, τi+1) interpolates within a B-spline segment between
two knots. C2 continuous curves require to use at least cu-
bic B-splines while a uniform knot spacing allows to give
an explicit matrix form as follows (Parent [26] p. 464):

p(τ) = [u3, u2, u, 1]
1

6

−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

p0

p1

p2

p3

 (2)

A B-spline has local support of k control points. The com-
plexity is thus bounded by the continuity requirement, and
not by the number of control points. It does not interpo-
late, but only approximates the control points. In a cubic B-
spline, four consecutive control points influence the curve at
time τ , where τ ∈ [τi, τi+1). In contrast to a Bézier curve,
this means that the curve is only defined in [τ1, τn] instead
of [τ0, τn+1]. To cope with this issue phantom points have
to be added at the beginning and end of the spline so that
the curve is defined over the timespan of all control points.
These can be placed so that the B-spline actually interpo-
lates the first and last control point (Fig. 4d).

Continuity vs. local control vs. approximation When
interpolating many control points with C2 continuity re-
quirements, we can either use a B-spline or a composite
Bézier curve, which is a series of Bézier segments, where
the last control point of one segment is the first control
point of the next. This ensures C0 continuity. For higher
order continuity, we have to place interior control points in
a special way, because in contrast to B-spline basis func-
tions (Fig. 3e), the Bézier basis functions (Fig. 3a) of one
segment have no influence into neighboring ones.
C2 continuity requires at least cubic curves. However, to

gain C2 continuity, a cubic composite Bézier curve loses lo-
cal control. To enforce it, all the control points become de-
pendent on each other (Fig. 3c). The constraints on interior
control point placement propagate through the whole curve,
so if a single control point moves, the whole curve needs

(a) linear (b) quadratic (c) cubic

Figure 2: B-spline segment of degree 1,2 and 3 constructed with
the de Boor algorithm. The gray area indicates the current segment
u ∈ [0, 1] between the two knots τi, τi+1. Only the basis func-
tions which influence the current segment are plotted, notice how
they extend to neighbouring segments to ensure continuity across
segment boundaries. The width or support of a basis function is
exactly degree+1 segments.

to be re-evaluated. On the other hand, cubic B-splines have
C2 continuity and local control, but they lose the interpola-
tion property of a composite cubic Bézier curve, they only
approximate the control points (Fig. 3d).

For keyframe animation, an interpolation method should
interpolate the given sequence, but for continuous-time tra-
jectory estimation and filtering methods, an approximating
curve converging to the desired shape during optimization
is sufficient and might be even beneficial due to its intrinsic
handling of outliers. Local control allows that only a subset
of control points has to be updated when new measurements
arrive and the curve automatically stays C2 continuous.

Summary
• A C2 continuous composite cubic Bézier curve interpo-

lates the control points but has global control.
• A C2 continuous cubic B-spline has local control but

only approximates the control points.

4. Orientation interpolation methods
In 1998, Dam et al. [4] establish a framework to compare

orientation interpolation methods. A trajectory in SO(3) on
the provided orientations (Tab. 1) lives on one hemisphere
of the usual sphere S2 instead of S3, because z = 0, so it can
be printed to paper (Fig. 4). The angular velocity norm plot
furthermore helps to judge the curve’s smoothness. Regard-
ing the orientation parameterization, one can usually choose
between Euler angles, rotation matrices or unit quaternions,
but no matter the choice, one either has to deal with singu-
larities or over-parameterization. For interpolation, the last
one is however suited best, because it is singularity-free at

i θ ∈ [−π, π] ω ∈ R3 q = [w, x, y, z] ∈ S3

0 1 (1, 3, 0) [0.88, 0.15, 0.45, 0]
1 1.9 (-1, 0, 0) [0.58, -0.81, 0.00, 0]
2 0 (-2, 1, 0) [1.00, -0.00, 0.00, 0]
3 -2 (3, 4, 0) [0.54, -0.50, -0.67, 0]
4 -1 (-1, 4, 0) [0.88, 0.12, -0.47, 0]
5 1 (2, 3, 0) [0.88, 0.27, 0.40, 0]

Table 1: Key frames with index i, rotation angle θ and axis ω
corresponding to the unit quaternion q adapted from [4, Table 5.1].

the cost of just one additional unit norm constraint.

Quaternions (H) A quaternion q is in essence the exten-
sion of a complex number c = a+bi ∈ C,C = R+Ri, i2 =
−1 from 2 to 4 dimensions:

H = C + Cj, j2 = −1, ij = −ji (3)

Formally, a quaternion q ∈ H may be represented by a vec-
tor q = [qw, qx, qy, qz]

T = [qw,qv]
T together with the def-

initions:

adjoint/conjugate : q̄ = [qw,−qv]T (4)

norm : ‖q‖ =
√
q2w + q2x + q2y + q2z (5)

inverse : q−1 =
q̄

‖q‖
(6)

Multiplication of two quaternions is associative and dis-
tributive, but non-commutative since qq′ 6= q′q, ij = −ji.
With dot · and cross × product it can be defined as [4, 14]:

qq′ = [qwq
′
w − qv · q′v , qv × q′v + qwq

′
v + qvq

′
w] (7)

Special unitary group of unit quaternions (SU(2))

SU(2) ∼= S3 ∼= H1 = {q ∈ H | ‖q‖ = 1} (8)

Just as complex numbers can be used to represent rotations
in R2 using Euler’s formula eiϕ = cos (ϕ) + i sin (ϕ), cer-
tain quaternions can be used to represent rotations in R3.
These are exactly the quaternions with unit norm H1, a sub-
space of H. By identifying quaternion coefficients with R4,
unit quaternion coefficients form the 3-dimensional hyper-
sphere S3. Note that topologically, the groups SU(2) ∼=
S3 ∼= H1 are all isomorphic to each other. Furthermore,
SU(2) is a universal double cover of SO(3), meaning that
the two antipodal unit quaternions q and −q both represent
the same orientation. Because of this, the distance measure
in S3 is also twice as long as that of SO(3). Rotation com-
position can just be expressed by quaternion multiplication
(7). Note that for unit quaternions, the inverse rotation is
simply the quaternion conjugate q−1 = q̄.

(a) composite Bézier curve basis (b) comp. C1 Bézier curve (c) comp. C2 Bézier curve (d) C2 B-spline (e) B-spline basis

Figure 3: Comparison of composite cubic Bézier curves with a uniform cubic B-spline, defined by 7 control points. The segments in the
basis function plot are shaded in the same color as the curve segment influenced by these basis functions.

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
rv

el
oc

ity

(a) SLERP: The keyframes are interpolated
piecewise [28], resulting in local control.
However, the curve is only C0 and thus not
differentiable at the keyframes. The angu-
lar velocity graph is piecewise continuous,
meaning that the angular velocity is con-
stant in between keyframes.

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
rv

el
oc

ity

(b) SQUAD: The curve [29] is C1 and thus
at least once differentiable everywhere.
The angular velocity graph is continuous
and has minima at the keyframes. Changes
of one control point only propagate to the
immediately neighboring segments, thus
we have local control.

0 1 2 3 4 5
0

1

2

3

4

i

an
gu

la
rv

el
oc

ity

(c) RQBez: The curve looks very similar
to SQUAD, but is actually a uniform cu-
bic Bézier curve of the quaternion coeffi-
cients ∈ R4 with subsequent renormaliza-
tion. The segments are joined with C2 con-
tinuity requirements, thus we have global
control.

0 1 2 3 4 5
0

1

2

3

4

i
an

gu
la

rv
el

oc
ity

(d) CuBsp: This C2 curve is the uniform
cumulative cubic B-spline on SU(2), in-
troduced by [21] and used in [22, 27].
The angular velocity graph shows that this
curve minimizes angular accelerations. It
has local control, but the inner keyframes
are only approximated.

Figure 4: Comparison of orientation interpolation methods on the surface of the sphere S2 and by the norm of their angular velocity su(2).

Quaternion linear blending (QLB) [18] A good approx-
imation to interpolate two orientations is LERP (1) on
quaternion coefficients along the 4D straight line chord be-
low the surface of S3, followed by a renormalization. This
results in non-constant rotational velocity along u ∈ [0, 1]:

QLB(q0,q1, u) =
LERP(q0,q1, u)

‖LERP(q0,q1, u)‖
(9)

Renormalized quaternion Bézier curve (RQBez) For
multiple frames, an Euclidean cubic composite Bézier curve
(Fig. 3b) on quaternion coefficients with subsequent renor-
malization can be used. The segments are joined with (Eu-
clidean) C2 continuity, which results in an interpolating
curve (Fig. 4c) that looks smooth and is fast to evaluate,
but which doesn’t minimize angular accelerations.

Lie algebra of pure quaternions (su(2))

su(2) ∼= R3 ∼= H0 = {q ∈ H | qw = 0} (10)

The group of unit quaternions H1 is isomorphic to the Lie
group SU(2). Thus, its corresponding Lie algebra su(2)
also has a representation with quaternions. These are ex-
actly the pure quaternions H0. Since the scalar part of these
quaternions is zero, we can identify their vector part with
R3, which can be interpreted as an angular velocity vector
[13]. Topologically, the algebras su(2) ∼= R3 ∼= H0 are all
isomorphic to each other and form the tangent space at the
identity of the Lie group SU(2).

Quaternion exp and log Similar to matrices [23], one can
define exponentiation and logarithm for quaternions. These

allow to convert between Lie group and algebra as follows:

ω ∈ R3 ∼= su(2)
exp−−⇀↽−−
log

q ∈ S3 ∼= SU(2) (11)

However, one has to take care of the double covering and
the resulting different distance measure when implement-
ing above functions. Given an angular velocity vector
ω = θω̂ ∈ R3, θ = ‖ω‖ , ω̂ ∈ S2, the exponential

exp(ω) = [cos(
1

2
θ), ω̂ sin(

1

2
θ)]T = [qw,qv]

T = q (12)

becomes the unit quaternion which represents the rotation
by angle θ about the axis ω̂ [21]. The exponential map exp
can: 1) Be interpreted as a mapping from the angular veloc-
ity vector ω ∈ R3 into the unit quaternion which represents
the rotation. 2) Be used as a conversion from the angle-
axis representation (θ, ω̂) of rotations to unit quaternions.
Omitting the scalar constant 0.5 in above equation yields
a rotation by angle 2θ instead of θ around ω̂, because ω is
then measured in S3 instead of SO(3). Since cos and sin are
periodic functions, the range of arccos is π, and the inverse
of exp, called log, can only recover the original angles θ
modulo 2π:

log(q) = 2 arccos(qw)
qv
‖qv‖

= θω̂ = ω (13)

Spherical linear interpolation (SLERP) [28] (Shoe-
make ’85) With these insights, it is possible to define inter-
polation with constant angular velocity between two quater-
nions along u ∈ [0, 1]:

SLERP(q0,q1, u) = q0 exp(u log(q̄0q1)) (14)

It produces a geodesic in S3, with the property of constant
angular velocity along the corresponding path in SO(3).
This is due to the fact that the intermediate quaternions are
equally spaced on this curved surface. If interpolating more
than two orientations, a piecewise application is possible
(Fig. 4a), but provides only C0 continuity.

Spherical cubic spline quadrangle (SQUAD) [29]
(Shoemake ’87) C1 continuity can be gained using bilinear
parabolic blending on a quaternion quadrangle, which is
nicely explained in [32]. To ensure C1 continuity across seg-
ment boundaries, the two inner control quaternions si, si+1

are computed in a special way (16) from 3 adjacent quater-
nions of the keyframe sequence. The composite curve (Fig.
4b) is then C1 continuous [4, proof of prop. 30] and has lo-
cal control. Nevertheless, modifying one keyframe requires
to recompute interior control points in directly adjacent seg-
ments to maintain this continuity across segment bound-
aries. Since the original paper [29] is not available anymore,

we replicate the definition of SQUAD, using quaternion ex-
ponentiation (12) and logarithm (13) here according to [4,
def. 17]:

SQUAD(qi, si, si+1,qi+1, u)

= SLERP
(
SLERP(qi,qi+1, u), (15)

SLERP(si, si+1, u), 2u(1− u)
)

si = qi exp

(
− log(q−1i qi+1) + log(q−1i qi−1)

4

)
(16)

Cumulative B-spline curve (CuBsp) [21] (Kim, Kim,
Shin ’95) A B-spline (2) is given as sums of basis functions
with control points as coefficients p(τ) =

∑n
i=0N

k
i (τ)pi.

Using the cumulative basis Ñk
i (τ) =

∑n
j=iN

k
j (τ) with the

property Ñk
0 (τ) = 1, τ > τ0 due to the partition of unity,

the B-spline can be rearranged into cumulative form as fol-
lows [21]: p(τ) = p0 +

∑n
i=1 Ñ

k
i (τ)(pi − pi−1). In Eu-

clidean space, the difference between consecutive control
points pi−i and pi is the time difference ∆τ = τi−τi−1 be-
tween those points times the velocity vi∆τ = −pi−1 +pi.
While we cannot apply the B-spline basis form to the Lie
group of unit quaternions (because it is not closed un-
der addition) the concept of velocity also exists in quater-
nion space, more specifically in its associated Lie alge-
bra of pure quaternions, which can be interpreted as angu-
lar velocity vectors ωi∆τ = log(q̄i−1qi) that allow for
multiplication by a scalar weight as needed for interpo-
lation. With the cumulative basis Ñ and replacing p(τ)
with q(τ), p0 with q0, vi with ωi, summation in the Lie
algebra with (quaternion) multiplication in the Lie group
(exp

∑n
i=1 αi =

∏n
i=1 expαi) we arrive at:

CuBsp(q(τ)) = q0

n∏
i=1

exp
(
Ñk
i (τ) log(q−1i−1qi)

)
(17)

When using uniform time intervals ∆τ = τi+1 − τi∀i ∈
[0, n−1] the cubic cumulative B-spline basis matrix Ñ (18)
for a C2 curve (Fig. 4d) is obtained by summing up the
columns of the standard basis form matrix (2) with equal or
greater index for each column [27]:

Ñ = [u3 u2 u 1]C

˙̃
N =

[3u2 2u 1 0]

∆τ
C

C =
1

6

0 1 −2 1
0 −3 3 0
0 3 3 0
6 5 1 0

 (18)

The angular velocity of this cubic quaternion curve
q(τ) = q0 exp(Ñ1ω1) exp(Ñ2ω2) exp(Ñ3ω3) (17),
where basis matrix Ñ, but not control quaternions qi, de-
pend on time τ through u can be derived analytically, which
in an optimization problem allows to directly constrain the

trajectory shape using IMU measurements e.g. with auto-
matic differentiation in Ceres Solver [1]. The angular veloc-
ity ω(τ) ∈ R3 measured in SO(3) in the sensor frame is the
vector part of the pure quaternion [0,ω(τ)] = 2(q̄(τ)q̇(τ))
obtained via the first curve derivative:

q̇(τ) = q0x1χ̇1x2x3 +q0x1x2χ̇2x3 +q0x1x2x3χ̇3 (19)

analytically derived by applying:

1. Power rule (xn)′ = nxn−1 to matrix Ñ to get ˙̃
N (18).

2. Chain rule x′i = (ui(vi))
′ = u′i(vi)v

′
i with ωi :=

log(q̄i−1qi), ui = exp(vi) and vi = Ñiωi to get

x′i = exp(Ñiωi)(
˙̃
Niωi).

3. Product rule (x1x2x3)′ = x′1x2x3+x1x
′
2x3+x1x2x

′
3

with xi := exp(Ñiωi), χ̇i := (
˙̃
Niωi) to get (19).

5. Rigid body motion interpolation methods
In addition to orientation, a rigid body motion addition-

ally consists of a translation part t ∈ R3 that also needs
to be interpolated, either independently in Euclidean space
(Sec. 3) in a split interpolation scheme, or jointly. For the
latter, we will now introduce two different possible parame-
terizations that are geometrically equivalent but have a dif-
ferent computational complexity.

Special Euclidean group of rigid body motion (SE(3))

SE(3) =

{
T =

[
R t
0 1

] ∣∣ R ∈ SO(3), t ∈ R3

}
(20)

To jointly parameterize the full rigid body motion, consist-
ing of translation and rotation, homogeneous 4×4 matrices
are usually used. Transformation composition is given by
matrix multiplication TT′ and the inverse transformation
T−1 is just:

TT′ =

[
RR′ Rt′ + t

0 1

]
, T−1 =

[
RT −RT t
0 1

]
(21)

A vector p ∈ R3 is rotated and translated by interpreting
it as a column vector p̃ = [px, py, pz, 1]T in homogeneous
coordinates and then carrying out a simple matrix-vector
multiplication: Tp := Tp̃ = Rp + t.

Lie algebra of twists (se(3))

se(3) =

{
ξ̂ =

[
[ω]× v

0 0

] ∣∣[ω]× ∈ so(3),v ∈ R3

}
(22)

Being a Lie group, SE(3) also has its associated Lie alge-
bra of twists ξ̂ ∈ se(3) where the vectors ω and v can be
interpreted as angular and linear velocity. There also ex-
ist versions of SE(3) exponentiation and logarithm [23] to
convert between algebra and group.

Dual quaternions (DH) A dual quaternion Q ∈ DH is
an ordered set of quaternions q,q′ that can be written as
Q = q + q′ε where ε is a dual unit satisfying ε2 = 0
and commuting with the quaternion imaginary units, e.g.
iε = εi [15]. Its algebra is a combination of quaternion and
dual number algebra, which mostly differs in the definition
of the norm since there are two conjugates [19].

DH1 =

{
Q = q +

1

2
t̃qε

∣∣ t̃ ∈ H0,q ∈ H1

}
(23)

A unit dual quaternion is an alternative and more space-
efficient parameterization of the joint rigid body motion
than transformation matrices. It has unit norm ||Q|| = 1,
which translates to satisfying the constraints qq̄ = 1 and
qq̄′ + q′q̄ = 0 [3]. They will be automatically fulfilled if
it is constructed by interpreting the translation part t of the
rigid body motion as a pure quaternion t̃ = [0, t]T and the
rotation part q as a unit quaternion. The translational part
can be recovered via [0, t]T = t̃ = 2q′q̄ [19, 15].

(angle θ, pitch d, axis l,moment m) ∈ R8 (24)

The transformation of unit dual quaternion parameters
(q,q′) ∈ R8 to screw parameters (24) is a way to rep-
resent their tangent space, which is geometrically equal to
se(3), but in which interpolation can be done just by scal-
ing θ and d [5]. This also allows to implement the exp and
log operations and thus the power of a unit dual quaternion
more efficiently than the corresponding operations needed
to get from transformation matrices T ∈ SE(3) to twists
ξ̂ ∈ se(3) and twist coordinates ξ ∈ R6 [20].

5.1. Interpolating two keyframes (Fig. 5)

Split interpolation (SPLIT) [21] in R3 × SU(2) as usu-
ally employed in graphics separately interpolates position
and orientation by applying SLERP (14) on q0,q1 and
LERP (1) on t0, t1 along u ∈ [0, 1]:

SPLIT
(
(q0, t0), (q1, t1), u

)
=
(
SLERP(q0,q1, u),LERP(t0, t1, u)

)
(25)

=
(
q0 exp(u log(q̄0q1)), t0 + u(t1 − t0)

)
Special Euclidean twist upsampler (SE3Up) [25, 7] in
SE(3) is a SLERP (14) like construction on se(3) (5) twists
in the tangent space of SE(3) (20), resulting in a joint inter-
polation scheme. The orientation curve is identical to (25),
but the translation curve does not follow the shortest path
between the two keyframes. Instead, the intermediate trans-
lations along u ∈ [0, 1] depend on the orientation difference
between keyframes, as inspection of the se(3) tangents (27)
for the translational part RT

0 (t1 − t0) reveals:

Figure 5: Interpolation of two poses (black) with positions
t0 = (0, 0,−1), t3 = (0, 0, 1) and rotations with angle θ0 =
−90◦, θ3 = 90◦ around the x axis in the y-z plane. The
maximum translational deviation between SPLIT (orange) and
SE3Up/ScLERP (violet) is half the distance of the two base poses.
This happens when they are pointing in opposite directions, in
which case joint interpolation follows a half-circle. DLB (small
frustrums) traces out the same half-circle, but at non-constant
(bell-shaped) speed resulting in the first 2 intermediate frames
(red,green) beeing placed before, and the last two (blue,yellow)
after their non-approximated counterpart.

SE3Up(T0,T1, u) = T0 exp
(
u log(T−10 T1)

)
(26)

log(T−10 T1) = log

[
RT

0 R1 RT
0 (t1 − t0)

0T 1

]
(27)

Screw linear interpolation (ScLERP) [15] in DH1 is ge-
ometrically equivalent but slightly more efficient than (26)
because of the screw (24) tangent space parameterization.
Dual quaternion linear blending (DLB) [15], the direct
extension of QLB (9) to DH1, is a much more efficient ap-
proximation of (26) coming at the cost of non-constant an-
gular and linear velocity between frames.

5.2. Trajectory from multiple keyframes (Fig. 6)

Split Trajectory (CuBsp) [21] in R3×SU(2) through it-
erated SPLIT (25) weighted as in (17) produces indepen-
dent curves (q(τ), t(τ)). The cumulative basis Ñ (18)
can with vi = ti − ti−1 also be used in R3 as t(τ) =

t0 + Ñ1v1 + Ñ2v2 + Ñ3v3 instead of (2) directly on ti.

Spline Fusion twist curve (SpFus) [22, 27] in SE(3)
through iterated SE3Up (26) leads to a joint trajectory
whose translation t(τ) is hard to control, since it is coupled
with orientation differences between 4 control points.

Screw Fusion B-spline (ScFus) in DH1 through iterated
ScLERP on screw (24) tangents, and its approximation
Dual quaternion linear fusion (DLFus), which is DLB
weighted by (2) are faster than SpFus but behave similarly.

Figure 6: Trajectory from 4 poses with t1 = (0, 0.8,−0.5),
t2 = (0, 0, 0), θ1 = θ0, θ2 = −π/4. The translational deviation
between piecewise SPLIT (orange) and SE3Up (violet) declines in
proportion to the relative orientation difference and the curves are
equal when it is 0◦. The translation of the higher order split trajec-
tory CuBsp (green) is the weighted sum of the positions of its base
poses, so it behaves just like a normal B-spline in Euclidean space,
which is not the case for the joint trajectory SpFus/ScFus (cyan).
For the cubic case as above, its shape additionally depends on the
relative orientation differences of 4 base poses, weighted by (18).

6. Runtime experiments
Our experiments (Tab. 2) show that joint interpolation

with twists in SE(3) (SE3Up, SpFus) is 2x slower than the
split one in R3 × SU(2) (SPLIT, CuBsp), which is consis-
tent with [25], who reported that an optimization algorithm
using CuBsp converges twice as fast as SpFus. Joint inter-
polation with screws in DH1 (ScLERP, ScFus) is just 1.3x
slower. Approximations (QLB+LERP, DLB, DLFus) are
10x, 5x, at least 2x faster than exact ones (SPLIT, CuBsp).

Name Time(ns)
QLB+LERP 10

DLB 23
SPLIT 103

ScLERP 127
SE3Up 200

Name Time(ns)
DLFus 167

SQUAD∗ 189
CuBsp 319
ScFus 428
SpFus 675

Table 2: Runtime for pairwise (left) and higher order (right) rigid
body motion interpolation. Timings are the averages for one eval-
uation of the curve on an i7-8700K@3.7GHz with Ubuntu 18.04,
g++ 7.3.0, Eigen 3.3.4 [11] and Sophus #13fb3288 [31]. (*) For
the translation part, we applied a similar bilinear interpolation as
in SQUAD by replacing SLERP with LERP in (15).

7. Conclusion
We compared Euclidean, orientation and rigid body mo-

tion interpolation methods on SU(2), SE(3) and DH1 mani-
folds. Splitting R3×SU(2) (CuBsp) avoids coupling trans-
lation with orientation as in the joint trajectory in SE(3)
(SpFus), efficiently represented via DH1 (ScFus/DLFus).
In the future, higher spline orders and the methods’ con-
vergence rates in optimization procedures will be evaluated.

References
[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org, 2012. 7
[2] B. Busam, T. Birdal, and N. Navab. Camera pose filtering

with local regression geodesics on the riemannian manifold
of dual quaternions. October 2017. 2

[3] B. Busam, M. Esposito, B. Frisch, and N. Navab. Quater-
nionic upsampling: Hyperspherical techniques for 6 dof pose
tracking. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 629–638. IEEE, 2016. 2, 7

[4] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, in-
terpolation and animation. Datalogisk Institut, Københavns
Universitet, 1998. 2, 4, 6

[5] K. Daniilidis. Hand-eye calibration using dual quaternions.
The International Journal of Robotics Research, 18(3):286–
298, 1999. 2, 7

[6] G. Farin. Curves and Surfaces for CAGD. 5 edition, 2002. 3
[7] P.-E. Forssén. Smoothing of so(3) and se(3). slerp, and

splines on so(3). Geometry for Computer Vision PhD course,
Slides for lecture 7, 2014. 2, 7

[8] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time
batch estimation using temporal basis functions. In Robotics
and Automation (ICRA), 2012 IEEE International Confer-
ence on, pages 2088–2095. IEEE, 2012. 2

[9] P. Furgale, C. H. Tong, T. D. Barfoot, and G. Sibley.
Continuous-time batch trajectory estimation using temporal
basis functions. The International Journal of Robotics Re-
search, page 0278364915585860, 2015. 2

[10] F. S. Grassia. Practical parameterization of rotations using
the exponential map. Journal of graphics tools, 3(3):29–48,
1998. 1

[11] G. Guennebaud, B. Jacob, et al. Eigen v3. http://
eigen.tuxfamily.org, 2010. 8

[12] A. J. Hanson. Visualizing Quaternions. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2006. 2

[13] D. D. Holm. Geometric mechanics. Imperial College Press,
2008. 5

[14] Y.-B. Jia. Quaternions and rotations. Com S, 477(577):15,
2008. 4

[15] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara. Dual
quaternions for rigid transformation blending. Trinity Col-
lege Dublin, Tech. Rep. TCD-CS-2006-46, 2006. 2, 7, 8

[16] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Skinning
with dual quaternions. In Proceedings of the 2007 sympo-
sium on Interactive 3D graphics and games, pages 39–46.
ACM, 2007. 2

[17] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geometric
skinning with approximate dual quaternion blending. ACM
Transactions on Graphics (TOG), 27(4):105, 2008. 2

[18] L. Kavan and J. Žára. Spherical blend skinning: a real-
time deformation of articulated models. In Proceedings of
the 2005 symposium on Interactive 3D graphics and games,
pages 9–16. ACM, 2005. 2, 5

[19] B. Kenwright. A beginners guide to dual-quaternions: what
they are, how they work, and how to use them for 3d charac-
ter hierarchies. 2012. 7

[20] B. Kenwright. Dual-quaternions, from classical mechanics
to computer graphics and beyond, 2012. 7

[21] M.-J. Kim, M.-S. Kim, and S. Y. Shin. A general construc-
tion scheme for unit quaternion curves with simple high or-
der derivatives. In Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques,
pages 369–376. ACM, 1995. 2, 5, 6, 7, 8

[22] S. Lovegrove, A. Patron-Perez, and G. Sibley. Spline fu-
sion: A continuous-time representation for visual-inertial fu-
sion with application to rolling shutter cameras. In BMVC,
2013. 2, 5, 8

[23] Y. Ma, S. Soatto, J. Kosecká, and S. Sastry. An Invitation to
3-D Vision: From Images to Geometric Models. Interdisci-
plinary Applied Mathematics. Springer New York, 2005. 5,
7

[24] M. E. Mortenson. Geometric Modeling (2nd Ed.). John Wi-
ley & Sons, Inc., New York, NY, USA, 2 edition, 1997. 3

[25] H. Ovrén and P.-E. Forssén. Trajectory representation and
landmark projection for continuous-time structure from mo-
tion. arXiv preprint arXiv:1805.02543, 2018. 2, 7, 8

[26] R. Parent. Computer animation: algorithms and techniques.
Newnes, 3 edition, 2012. 1, 3

[27] A. Patron-Perez, S. Lovegrove, and G. Sibley. A spline-
based trajectory representation for sensor fusion and rolling
shutter cameras. International Journal of Computer Vision,
113(3):208–219, 2015. 2, 5, 6, 8

[28] K. Shoemake. Animating rotation with quaternion curves.
In ACM SIGGRAPH computer graphics, volume 19, pages
245–254. ACM, 1985. 2, 5, 6

[29] K. Shoemake. Quaternion calculus and fast animation. In
ACM SIGGRAPH Course Notes 10, Computer Animation:
3-D motion specification and control, number 10, pages 101–
121. Siggraph, 1987. 2, 5, 6

[30] H. Sommer, J. R. Forbes, R. Siegwart, and P. Furgale.
Continuous-time estimation of attitude using b-splines on
lie groups. Journal of Guidance, Control, and Dynamics,
39(2):242–261, 2015. 2

[31] H. Strasdat, S. Lovegrove, and Others. Sophus: C++ imple-
mentation of lie groups using eigen. https://github.
com/strasdat/Sophus, 2011. 8

[32] A. Watt and M. Watt. Advanced Animation and Rendering
Techniques. ACM, New York, NY, USA, 1991. 6

http://ceres-solver.org
http://ceres-solver.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://github.com/strasdat/Sophus
https://github.com/strasdat/Sophus

