
Multiview ICP

Adrian Haarbach

August 2015

The goal of this project was to solve the multiview rigid point cloud
registration problem using multiview levenberg-marquardt ICP implemented
with Ceres solver.

1 ICP

The Iterative Closest Points algorithm (ICP) [1, 2, 3] is a two-step iterative
algorithm to rigidly align two point clouds. The following two steps are
applied in alternation until convergence:

1. compute closest point correspondences {pi → qi}N1 between the two
clouds

2. update the current transformation estimate g ∈ SE(3) so that it
minimizes a cost function defined on these correspondences.

In the following, we concentrate on step 2, meaning the update of the trans-
formation estimate while leaving the correspondences fixed, and extend it to
the multiview setting.

2 Pairwise registration

Let pi ↔ qi(pi, qi ∈ R3) be a set of point correspondences. The goal is to find
a rigid body motion g ∈ SE(3) that minimizes the following error:

E(g) =
N∑
i=1

l(||d(g(pi), qi)||2) (1)

Where d is a CostFunction while l is a LossFunction. The solution g =
argmin(E) is the relative transformation that aligns the model cloud (the
pi) to the data cloud (the qi) in a least squares sense.

1

3 Multiview registration

In the multiview setting, the roles of model and data cloud are no longer
fixed, since one cloud can take on the roles of both of them. Let C1, . . . CM
be the set of point clouds that are brought to be in alignment. To generalize
and formalize the notation of which cloud gets registered to which other
cloud, we can encode these relations as a directed graph, with the adjacency
matrix A ∈ {0, 1}M×M , such that A(h, k) = 1 if cloud Ch can be registered
to cloud Ck. Let g1, . . . gM be the absolut camera poses of each view in the
global reference frame. The alignment error between two clouds Ch and Ck
then is:

E(gh, gk) = A(h, k)
Nh∑
i=1

l(||d(gh(p
h
i), gk(q

h
i))||2) (2)

where {phi → qhi } are the Nh closest point correspondences obtained from
the clouds Ch and Ck. The pairwise formulation (1) can be obtained by
setting g = gk ∗g−1h . The overall alignment error, which we want to minimize
at this stage, is obtained by summing up the contribution of every pair of
overlapping views:

E(g1, ..., gM) =
M∑
h=1

M∑
k=1

A(h, k)
Nh∑
i=1

l(||d(gh(p
h
i), gk(q

h
i))||2) (3)

The solutions g1, ..., gM = argmin(E) are the absolute camera poses that
align the M clouds in a least squares sense. In contrast to the pairwise
registration error (1), which has closed form solutions for the relative trans-
formation g that aligns the two clouds, there are no closed form solutions
in the multiview setting. However, rigid point cloud registration is just an
instance of Non-linear least squares optimization, which can be solved effi-
ciently using Ceres Solver 1.

3.1 Common ICP Cost Functions

3.1.1 Pairwise

The most prominent cost functions one minimizes using closed form solutions
in the pairwise setting are:

E(g) =
N∑
i=1

||R · pi + t− qi||2 (4)
point to point [1, 3]

1 http://ceres-solver.org/nnls_tutorial.html

2

http://ceres-solver.org/nnls_tutorial.html

E(g) =
N∑
i=1

||(R · pi + t− qi)Tnqi ||2 (5)
point to plane [2]

where R ∈ SO(3), t ∈ R3, so g = (R, t) ∈ SE(3). In these cases, the loss
function l is just the identity, and the cost functions d are

dpoint−point(g, p, q) = R · p+ t− q ∈ R3 (6)

dpoint−plane(g, p, q, nq) = (R · p+ t− q)Tnq ∈ R1 (7)

Even though there are closed form solutions in the pairwise setting for the
above cost functions [4, 5], one can also use Ceres to solve the pairwise error
(1) yielding a relative pose update g. Note that the evaluations of the cost
functions, called the residuals, don’t have to be in R3.

3.1.2 Multiview

The multiview setting needs only a slight modification of above cost func-
tions. In the pairwise setting, d depends on the relative pose g. In the
multiview setting, d depends on the two absolute poses gh = (Rh, th) and
gk = (Rk, tk).

dpoint−point(gh, gk, p, q) = (Rh · p+ th)− (Rk · q + tk) (8)

dpoint−plane(gh, gk, p, q, nq) = dpoint−point(gh, gk, p, q)
T (Rk · nq) (9)

With this slight modification of the cost functions, we can model (3)
using Ceres and let it solve for g1, ..., gM . Notice that in the point-to plane
case, the normals of the points in the destination cloud are only rotated, not
translated, since they represent directions rather than actual points.

4 Parametrization of rigid body motions

In the above, we just wrote g = (R, t) and especially assumed R to be a
3x3 rotation matrix R ∈ SO(3), which must fulfill RRT = I and |R| = 1.
If used in an iterative optimization algorithm, one has to optimize over 9
parameters constrained to above orthogonality conditions, while only having
3 degrees of freedom. It is much more efficient to optimize over minimal
representations of rotations such as AngleAxis, Unit Quaternions or the Lie
Algebra representation.

3

4.1 Angle Axis

According to Euler’s rotation theorem, any rotation in 3D space can be
expressed as a single rotation around some axis by a certain angle. The
angle-axis (or axis-angle) representation of a rotation parametrizes a rotation
by a unit vector n ∈ R3 as the axis of the rotation and an angle φ describing
the magnitude of the rotation around the axis.2

Furthermore, the angle of rotation θ can be absorbed into the norm of
the unit axis vector n, so that we only have 3 parameters for the 3 DoF:
ω = n ∗ θ. In the theory of three-dimensional rotation, Rodrigues’ rotation
formula, named after Olinde Rodrigues, is an efficient algorithm for rotating
a vector in space, given an axis and angle of rotation.3

Ceres AngleAxisRotatePoint function4 uses Rodrigues rotation formula
to directly rotate a point. One first has to recover the angle and the unit
axis from the minimal representation, the vector ω ∈ R3, which represents
rotational velocity, by φ = ||ω||, n = ω

φ
.

prot = p cosφ+ (n× p) sinφ+ n(nTp)(1− cosφ) (10)

Another way is to first convert from the Angle-Axis formulation to a ro-
tation matrix R, and then rotate the point by matrix - vector multiplication.
This second form of the Rodrigues rotation formula can be derived from the
first one.

R = I + sinφ[n]x + (1− cosφ)[n]2x

This is closely related to the Lie Algebra representation, where we also define
the [.]x cross product matrix operator (12).

4.1.1 Cost function

With the parametrization of g as (w, t) and w, t ∈ R3, we just replace all
occurrences of R · p (or q) in the cost functions (6), (7), (8), (9) with prot.
The translational component is still represented as a 3-dimensional vector.

4.1.2 Jacobian

We rely on Ceres AutoDiffCostFunction functionality to automatically com-
pute the necesarry derivatives of our Cost function parametrized by the angle
axis representation and a translation vector.

2 https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
3 https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
4 https://github.com/ceres-solver/ceres-solver/blob/master/include/

ceres/rotation.h#L566

4

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
https://github.com/ceres-solver/ceres-solver/blob/master/include/ceres/rotation.h#L566
https://github.com/ceres-solver/ceres-solver/blob/master/include/ceres/rotation.h#L566

4.2 Unit Quaternions

Yet another way to represent rotations are unit quaternions.
A quaternion q is basically the extension of a complex number c = a +

bi, i2 = −1 from 2 to 4 dimensions: q = w + xi + yj + zk, i2 = j2 = k2 =
ijk = −1. Just as complex numbers can be used to represent rotations in
R2 (remember Euler’s formula eiϕ = cos (ϕ) + i sin (ϕ)), quaternions can be
used to represent rotations in R3.

Formally, a quaternion q ∈ H may be represented by a vector q =
[qw, qx, qy, qz]

T = [qw, qx:z]
T together with the definitions:

adjoint : q̄ = [qw,−qx:z]T

norm : ||q|| =
»
q2w + q2x + q2y + q2z

inverse : q−1 =
q̄

||q||

A unit quaternion is a quaternion with unity norm, ||q|| = 1 and can
be used to represent the orientation of a rigid body in 3D Euclidean space.
Specifically, a unit quaternion can be retrieved from the axis-angle repre-
sentation, with a rotation φ about the normalized rotation axis n, ||n|| = 1
via

q(φ, n) = [cos(0.5φ), n sin(0.5φ)]T

Moreover, there are closed form solutions for converting a unit quaternion
into a rotation matrix as well as the other way around which we will use
extensively. Since they don’t look as neat as the previous formula, we refer
to [6] for the details.

Even though Ceres comes with an implementation of unit quaternions in
the same file as AngleAxisRotatePoint, we instead used Eigen’s quaternions
5, which allows for much nicer syntax due to operator overloading. It is
important to note that the storage order of the two differ: it is [x, y, z, w] for
eigen quaternions, but [w, x, y, z] for the ones built into ceres.

4.2.1 Local Parametrization

Unit Quaternions are not a minimal representation, they have 4 components.
Nevertheless, the 4th component, typically the scalar part w, can be recov-
ered from the other three because the whole 4-vector must have unit norm.

This is why Ceres gives you a 3-dimensional incremental update step δ
that needs to be applied to the current 4-dimensional unit quaternion. This

5 http://eigen.tuxfamily.org/dox/classEigen_1_1Quaternion.html

5

http://eigen.tuxfamily.org/dox/classEigen_1_1Quaternion.html

has to be done in a class extending Local Parametrization which must imple-
ment the Plus function. For Ceres in-built quaternions, this is implemented
in the QuaternionParameterization::Plus function. For our Eigen Quater-
nion, we copied the Plus function but adapted/permuted the indices to the
different storage order:

Plus(q, δ) = [sin(|δ|)δ/|δ|, cos(|δ|)] ∗ q

with * being the quaternion multiplication operator. Here we assume that the
last element of the quaternion vector is the real (cos theta) part ([x, y, z, w]
Eigen quaternion storage order).

Since we did not yet implement automatic differentiation of this local
parameterization (as for our Lie Algebra using the Sophus Library), one also
has to provide the correct Jacobian. For Eigen Quaternions storage order
they look as follows:

J =
∂q

∂δ
=

w z −y
−z w x
y −x w
−x −y −z

 (11)

4.2.2 Cost function

With the parametrization of g as (q, t) and q ∈ R4, t ∈ R3, we just replace all
occurrences of R · p (or q) in the cost functions (6), (7), (8), (9) with either
a direct quaternion rotation (Eigen storage order p = [x, y, z, w]):

[prot, 0]T = q · [p, 0] · q−1

or by first converting the quaternion to a Rotation matrix R as in [6]. The
translational component is still represented as a 3-dimensional vector.

4.2.3 Jacobian

In Ceres, it is possible to mix the analytic derivatives for our Local Parametriza-
tion as stated above with automatic derivatives for the complete cost func-
tion. This drastically lowered the complexity, while still providing decent
efficiency, since we were able to use only well tested analytic Jacobians for
the Local Parametrization, but did not have to compute analytic Jacobians
for the complete cost function.

6

https://github.com/ceres-solver/ceres-solver/blob/master/internal/ceres/local_parameterization.cc#L157

4.3 Lie Algebra of Twists

Each rigid body transformation matrix T in the Lie group T ∈ SE(3) has a
minimal representation as a twist ξ̂ in its associated Lie algebra ξ̂ ∈ se(3).
Each twist is uniquely defined by its twist coordinates ξ ∈ R6:

ξ = (ξ1, . . . , ξ6)
T = (u1, u2, u3, ω1, ω2, ω3)

T = (uTωT)T

where u represents the translational velocity and ω the rotational velocity.
Let us first define the operator [.]x, which is an isomorphism between R3

and the space so(3) of all 3x3 skew symmetric matrices ([ω]x = −[ω]Tx).

[.]x : R3 → so(3) ⊂ R3×3; [ω]x =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (12)

It allows to express the cross product p× q with p, q ∈ R3 as a matrix-vector
multiplication: p× q = [p]x ∗ q. Furthermore, it allows to convert from twist
coordinates to a twist using the hat operator:

∧ : R6 → se(3) ⊂ R4×4; ξ̂ = ξ∧ =

ñ
u
ω

ô∧
=

ñ
[ω]x u

0 0

ô
The mapping from the twist in the Lie algebra to the transformation matrix
in the Lie group is done by matrix exponentiation:

exp : se(3)→ SE(3)

exp(ξ̂) = exp

Çñ
[ω]x u

0 0

ôå
=

ñ
e[ω]x V u

0 1

ô
=

ñ
R t
0 1

ô
(13)

We can convert the vector ω ∈ R3, which represents rotational velocity, into
an axis angle representation by φ = ||ω||, n = ω

φ
, to obtain a closed form

solution for the Taylor series expansion e[w]x =
∑∞
i=0

[ω]ix
!i

using Rodrigues’
rotation formula:

e[w]x = e[n]xφ = I + sinφ[n]x + (1− cosφ)[n]2x

and similarly for V

V = I +
1− cosφ

φ
[n]x +

φ− sinφ
φ

[n]2x

To get from twist coordinates ξ ∈ R6 to a transformation matrix T ∈
SE(3) ⊂ R4×4 one first has to apply the hat operator ∧ and then the expo-
nential map exp. The other direction is possible as well, by first applying the

7

inverse of the exponential map, called the logarithmic map log, and then the
inverse of the hat operator, called the vee operator ∨. For our application
however, we only need the forward direction, which is why just summarize
the different operators here:

ξ ∈ R6 ∧(hat)−−−⇀↽−−−
∨(vee)

ξ̂ ∈ se(3)
exp−−⇀↽−−
log

T ∈ SE(3)

Every Lie group, such as SO(3) and SE(3), is a group that is also a smooth
manifold, with the property that the group operations of multiplication and
inversion are smooth maps. They can locally be approximated by their cor-
responding Lie algebras so(3) and se(3), which form the tangent space of the
group at the identity. This allows one to do calculus on the elements of the
Lie algebra, such as calculating derivatives, which we will need for numerical
minimization.

4.3.1 Cost function

With the parametrization of g by its twist coordinates ξ ∈ R6, we have a
truly minimal representation of both rotation and translation in just one 6
dimensional vector.

In the Lie algebra, a point p ∈ R3 is transformed (rotated and translated)
to the point y by a twist via [7][p.32] :ñ

y
0

ô
=

ñ
[ω]x u

0 0

ô ñ
p
1

ô
=

−ω3p2 +ω2p3 +u1

ω3p1 −ω1p3 +u2
−ω2p1 +ω1p2 +u3

0

⇔ y = w × p+ u

4.3.2 Jacobian

The Jacobian of the twist ξ̂ is calculated by partial derivates of y = [y1, y2, y3]
T

and the twist coordinates ξ = (u1, u2, u3, ω1, ω2, ω3)
T [8] :

J =
∂y

∂ξ
=

∂y1
∂ξ1

. ∂y1
∂ξ6

...
...

∂y3
∂ξ1

. ∂y3
∂ξ6

 =

1 0 0 0 p3 −p2
0 1 0 −p3 0 p1
0 0 1 p2 −p1 0

 (14)

8

References

[1] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes.
In Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[2] Yang Chen and Gérard Medioni. Object modeling by registration of
multiple range images. In Robotics and Automation, 1991. Proceedings.,
1991 IEEE International Conference on, pages 2724–2729. IEEE, 1991.

[3] Zhengyou Zhang. Iterative point matching for registration of free-form
curves and surfaces. International journal of computer vision, 13(2):119–
152, 1994.

[4] David W Eggert, Adele Lorusso, and Robert B Fisher. Estimating 3-
d rigid body transformations: a comparison of four major algorithms.
Machine Vision and Applications, 9(5-6):272–290, 1997.

[5] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp
surface registration. Chapel Hill, University of North Carolina, 2004.

[6] James Diebel. Representing attitude: Euler angles, unit quaternions, and
rotation vectors. Matrix, 58:15–16, 2006.

[7] Y. Ma, S. Soatto, J. Kosecká, and S.S. Sastry. An Invitation to 3-D
Vision: From Images to Geometric Models. Interdisciplinary Applied
Mathematics. Springer New York, 2005.

[8] Miroslava Slavcheva. Unified pipeline for 3d reconstruction from rgb-d
images using coloured truncated signed distance fields. Master’s thesis,
Technische Universität München.

9

	ICP
	Pairwise registration
	Multiview registration
	Common ICP Cost Functions
	Pairwise
	Multiview

	Parametrization of rigid body motions
	Angle Axis
	Cost function
	Jacobian

	Unit Quaternions
	Local Parametrization
	Cost function
	Jacobian

	Lie Algebra of Twists
	Cost function
	Jacobian

